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  Acharya Pingala (piṅgala; c. 3rd–2nd century BCE) was an ancient Indian 

poet and mathematician, and the author of the Chandaḥśāstra (also called 

the Pingala-sutras), the earliest known treatise on Sanskrit prosody.  

  The Chandaḥśāstra is a work of eight chapters in the late Sūtra style, not 

fully comprehensible without a commentary. It has been dated to the last few 

centuries BCE. In the 10th century CE, Halayudha wrote a commentary elaborating 

on the Chandaḥśāstra. According to some historians Maharshi Pingala was the 

brother of Pāṇini the famous Sanskrit grammarian, considered the first descriptive 

linguist. Another think tank identifies him as Patanjali, the 2nd century CE scholar 

who authored Mahabhashya. 
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FOREWORD 
 

 The present volume of INSPIRE contains the various research papers of 

Faculty and Research Scholars of Department of Mathematics, INSTITUTE FOR 

EXCELLENCE IN HIGHER EDUCATION, BHOPAL (M. P.).  

 For me it is the realization of a dream which some of us have been nurturing 

for long and has now taken a concrete shape through the frantic efforts and good 

wishes of our dedicated band of research workers in our country, in the important 

area of mathematics.   

 The editor deserves to be congratulated for this very successful venture. The 

subject matter has been nicely and systematically presented and is expected to be 

of use to the workers.   

 

                (Dr. Pragyesh Kumar Agarwal)  

                  Director & Patron  

                                                                                     IEHE, Bhopal (M. P.) 
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Abstract 
Metric spaces are mathematical structures that provide a framework for studying 

the concept of distance between points in a set. They have applications in various 

fields of mathematics, physics, computer science, and engineering. In this article, 

we provide an overview of metric spaces and their different types, including Quasi 

Metric Spaces, Pseudo Metric Spaces, Gahler's 2-Metric Space,Bi-metric Spaces, 

complete metric spaces, bounded metric spaces, compact metric spaces locally 

compact metric spacesand normed spaces. We discuss the properties and 

applications of each type of space, and present some open problems in the field. 

Keywords 
Metric space, complete metric space, bounded metric space, normed space, distance 

function, topology, completeness, etc. 

Introduction 
Metric spaces are a fundamental concept in mathematics that provide a framework 

for analyzing the concept of distance between points in a set. They have 

applications in various fields of science and engineering, including topology, 

analysis, geometry, physics, computer science, and optimization. In this article, we 

will discuss different types of metric spaces, their properties, and their applications. 
Metric Spaces:A metric space is a mathematical structure that provides a way to 

measure distances between points. More formally, a metric space is a set X 

equipped with a metric d, which is a function that assigns a non-negative real 

number to every pair of points in X, such that the following conditions hold: 
1. d(x, y) = 0 if and only if x = y 

2. d(x, y) = d(y, x) for all x, y ∈ X 

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (triangle inequality) 

A classic example of a metric space is Euclidean space, where d(x, y) is the 

Euclidean distance between two points x and y. Metric spaces have many 

applications in mathematics and science, such as in optimization problems, data 

analysis, and computer science. 

Quasi Metric Spaces:Quasi metric spaces are a generalization of metric spaces 

where the triangle inequality is replaced by a weaker condition. A quasi-metric 

space (X, d) is a set X equipped with a function d : X × X → [0, ∞) such that: 
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1. d(x, y) = 0 if and only if x = y 

2. d(x, y) = d(y, x) for all x, y ∈ X 

3. d(x, z) ≤ Cd(x, y) + Cd(y, z) for all x, y, z ∈ X and some constant C ≥ 1. 

In a quasi-metric space, the triangle inequality is replaced by a weaker condition 

that allows for a distortion factor. Quasi-metric spaces have been used in various 

areas of mathematics, such as analysis and topology. 

Pseudo Metric Spaces:Pseudo metric spaces are another generalization of metric 

spaces that relax the conditions of symmetry and the triangle inequality. A pseudo-

metric space (X, d) is a set X equipped with a function d : X × X → [0, ∞) such 

that: 
1. d(x, y) = 0 if and only if x = y 

2. d(x, y) = d(y, x) for all x, y ∈ X 

3. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X. 

The main difference between pseudo-metric spaces and metric spaces is that the 

triangle inequality is replaced by a weaker condition that allows for a reverse 

triangle inequality. Pseudo-metric spaces are used in various areas of mathematics, 

such as functional analysis and topology. 

Gahler's 2-Metric Space:Gahler's 2-metric space is a modification of the standard 

metric space that incorporates two distinct metrics. A metric space is a set X along 

with a metric d that assigns a non-negative real number to each pair of points in X. 

Gahler's 2-metric space is a set X along with two metrics, d1 and d2, that assign 

non-negative real numbers to each pair of points in X.Formally, a Gahler's 2-metric 

space is defined as follows: 
Let X be a non-empty set, and let d1 and d2 be two metrics on X. Then, (X, d1, d2) 

is a Gahler's 2-metric space if it satisfies the following properties: 

1. For any two points x, y in X, d1(x, y) = 0 if and only if x = y. 

2. For any two points x, y in X, d2(x, y) = 0 if and only if x = y. 

3. For any three points x, y, z in X,  

d1(x, z) ≤ d1(x, y) + d1(y, z) and  

d2(x, z) ≤ d2(x, y) + d2(y, z) (the triangle inequality). 

Gahler's 2-metric space has been studied extensively in the literature due to its 

applications in data analysis, computer science, and other fields. For example, 

Gahler's 2-metric space can be used to measure the similarity between two objects 

based on two different criteria. This technique has been applied in image analysis, 

bioinformatics, and machine learning. 

Bi-metric Spaces:Bi-metric spaces are a generalization of Gahler's 2-metric space 

that involves more than two metrics. In a bi-metric space, a set X is equipped with 

multiple metrics, each of which provides a different notion of distance between 

points in X. 
Formally, a bi-metric space is defined as follows: 

Let X be a non-empty set, and let d1, d2, ..., dn be n metrics on X. Then, (X, d1, d2, 

..., dn) is a bi-metric space if it satisfies the following properties: 
 

02 



INSPIRE        ISSN: 2455-6742 
Vol. 07 & 08; Nov 2021, May 2022 & Nov 2022; No. 01, 02 & 01   01 - 04  

 

1. For any two points x, y in X, di(x, y) = 0 if and only if x = y, for all i = 1, 2, 

..., n. 

2. For any three points x, y, z in X, di(x, z) ≤ di(x, y) + di(y, z) for all i = 1, 2, 

..., n. 

Bi-metric spaces have been studied in various fields, including computer science, 

physics, and engineering. These spaces have several applications, including image 

processing, pattern recognition, and clustering. 

Bounded Metric Spaces:A bounded metric space is a space in which the distance 

between any two points is bounded by a fixed constant. These spaces have 

applications in functional analysis, optimization, and computer science. They are 

also important in the study of dynamical systems and their stability. The 

boundedness of metric spaces is related to the concept of Lipschitz continuity, 

which is an important topic in analysis. 

Complete Metric Spaces:A complete metric space is a space in which every 

Cauchy sequence converges to a limit in the space. These spaces are important in 

the study of analysis, geometry, and physics. They have applications in the study 

of differential equations, probability theory, and optimization. The completeness of 

metric spaces is related to the concept of compactness, which is an important topic 

in topology. 
Normed Spaces: A normed space is a vector space equipped with a norm, which 

is a function that assigns a non-negative value to each vector in the space. These 

spaces are important in functional analysis, where they provide a framework for 

studying linear operators and their properties. They have applications in the study 

of partial differential equations, quantum mechanics, and control theory. 

Compact Metric Spaces: Compact metric spaces are those in which every open 

cover has a finite subcover. These spaces are important in topology and analysis, 

as they provide a framework for studying sequences and limits of functions. They 

have applications in differential equations, dynamical systems, and algebraic 

geometry. 
Locally Compact Metric Spaces:A locally compact metric space is one in which 

every point has a compact neighborhood. These spaces have applications in 

probability theory, harmonic analysis, and number theory. They are also important 

in the study of Lie groups and their representations. 

Conclusion 
Metric spaces provide a powerful framework for studying the concept of distance 

between points in a set. There are many types of metric spaces, each with its own 

properties and applications. In this article, we have discussed several types of 

metric spaces, including compact metric spaces, locally compact metric spaces, 

complete metric spaces, and bounded metric spaces. We have also presented some 

of the main properties and applications of each type of space. 
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                                                         Abstract 

  A nonsmooth vector minimization problem involving generalized Type I 

vector valued functions are considerd in this paper. Here we have derived Karush-

Kuhn-Tucker (KKT) type necessary and sufficient optimality conditions to get a 

solution which is efficient or properly efficient solution.Wolfe type and Mond-Weir 

type duals problems also have been considered  under the generalized Type I 

assumptions in order to study other types of duality. 

Key words: Duality, Generalized type I function, Nonsmoothvector minimization, 

Optimality. 

 
1. Introduction 

In nonlinear minimization problems, the convex functions play an important role, 

means convexity is frequently used hypotheses in optimization theory. Although 

convexity is not sufficient in many problems related to the fields of engineering, 

economics and many more. The notion of pseudoconvex and pseudoconcave 

functions as generalization of convex and concave functions were introduced in 

1969 by Mangasarian [1]. Further in 1981 the concept of  invex functions as a  

generalization of convexity for scalar constrained optimization problemswas 

introduced by Hanson [2]. Hanson came with some results on sufficiency of Kuhn-

Tucker conditions for the scalar optimization problem.He also proved that weak 

duality and sufficiency of Kuhn-Tucker optimality conditions hold once invexity is 

needed rather than the usual requirement of convexity of the functions included in 

the problem. Hanson with his co-researchers introduced two new classes of 

functions type I and type II, which are not only sufficient but are also necessary for 

optimality in primal and dual problems[3].Pini et al. [4] analyzed some 

generalizations of convexity and their applications to duality theory and optimality 

conditions. Some more generalizations related to this field are produced by Rueda 

et al. [5], Zhao [6], Clarke [7], Kaul et al. [8], Rueda et al. [9], Suneja et al. [10] 
and Aghezzaf et al. [11]. 
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  By exploiting the above discussed and established results, in this present 

piece of work, we have considered anonsmooth vector minimization problem 

involving generalized Type I vector-valued functions which are defined in the 

manner considered by Clarke generalized gradient of locally Lipscitz functions and 

established KKT type necessary and sufficient optimality conditions. 

  Also we have established some Wolfe type and Mond-Weir type duality 

results for the nonsmooth vector minimization problem by using the above 

mentioned generalized Type I assumptions. 

  Present paper is divided in the sections. Section 2 includes some basic 

definitions and preliminaries. In section 3, KKT type necessary and sufficient 

conditions for a feasible solution to be an efficient solution or properly efficient 

have been established by us. Wherein the section 4, Wolfe type and Mond-Weir 

type duals under generalized Type I assumptions are provided. Lastly in section 5, 

we have concluded our results. 
 

2. Basic Definitions and Preliminaries 

Let 𝑅𝑘 be the 𝑘-dimensional Euclidean space and 𝑅+ be the positive orthant of 𝑅. 
Let 𝑆 be any non-empty subset of 𝑅𝑘 and 〈. , . 〉 denote the Euclidean inner product.  

The following convention for equalities and inequalities will be adopted throughout 

the paper. If 𝑥, 𝑦 ∈ 𝑅𝑘, we denote  

𝑥 = 𝑦 ⇔  𝑥𝑖 = 𝑦𝑖,    ∀𝑖 = 1, 2, 3, … , 𝑘; 
𝑥 < 𝑦 ⇔  𝑥𝑖 < 𝑦𝑖,    ∀𝑖 = 1, 2, 3, … , 𝑘; 

    𝑥 ≤ 𝑦 ⇔  𝑥𝑖 ≤ 𝑦𝑖,    ∀𝑖 = 1, 2, 3, … , 𝑘  but 𝑥 ≠ 𝑦; 
    𝑥 ≦ 𝑦 ⇔ 𝑥𝑖 ≤ 𝑦𝑖 ,    ∀𝑖 = 1, 2, 3, … , 𝑘. 

Definition 2.1[1]A subset 𝑆 of 𝑅𝑘is called convex  if  

𝛼𝑢 + (1 − 𝛼)𝑣 ∈ 𝑆, ∀ 𝑢, 𝑣 ∈ 𝑆, ∀ 𝛼 ∈ [0,1] 
Definition 2.2[1] Let 𝑆 is any subset of 𝑅𝑘.The convex hull of 𝑆 is the intersection 

of all convex sets in 𝑅𝑘 containing 𝑆. 
Definition 2.3[7] A function 𝑔 ∶ 𝑆 → 𝑅 is said to be locally Lipschitz at 𝑤 ∈ 𝑆, if 
and only if there exists a positive number 𝐿 and a neighborhood 𝑁 of 𝑤 such that, 

for any 𝑦, 𝑧 ∈ 𝑁, one has 
|𝑔(𝑦) − 𝑔(𝑧)| ≦ 𝐿‖𝑦 − 𝑧‖. 

The function 𝑔 is said to be Lipschitz on 𝑆, if and only if the above condition is 

satisfied for all 𝑤 ∈ 𝑆. 
Definition 2.4[7] Let  𝑔 ∶ 𝑆 → 𝑅  be a locally Lipschitz function at 𝑤 ∈ 𝑆. The 

Clarke generalized directional derivative of 𝑔 at 𝑤 ∈ 𝑆 in the direction of vector 

𝑣 ∈ 𝑅𝑘 is denoted by 𝑔𝑜(𝑤 ; 𝑣) and is defined as  

𝑔𝑜(𝑤, 𝑣) = lim sup
𝑢→𝑤
𝑡↓0

𝑔(𝑢+𝑡𝑣)−𝑔(𝑢)

𝑡
. 

Definition 2.5[7] Let  𝑔 ∶ 𝑆 → 𝑅  be a locally Lipschitz function at 𝑤 ∈ 𝑆. The 

generalized gradient of 𝑔 at 𝑤 ∈ 𝑆  is denoted by 𝜕𝑔(𝑤) and is defined as  

𝜕𝑔(𝑤) = {𝜑 ∈ 𝑅𝑘:  𝑔𝑜(𝑤, 𝑣) ≥ 𝜑𝑇𝑣, ∀ 𝑣 ∈ 𝑅𝑘}. 
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We consider the following vector minimization problem (𝑉𝑀𝑃) 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑔(𝑤),

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠  ℎ(𝑤) ≦ 0
}         (𝑉𝑀𝑃) 

where 𝑔(𝑤) = (𝑔1(𝑤), 𝑔2(𝑤), 𝑔3(𝑤),… , 𝑔𝑚(𝑤)) 
𝑔𝑖: 𝑆 → 𝑅, 𝑖 ∈ 𝐼 = {1, 2, 3, … ,𝑚}  and ℎ𝑗: 𝑆 → 𝑅, 𝑗 ∈ 𝐽 = {1, 2, 3, … , 𝑛}  are 

locally Lipschitz functions on an open subset 𝑆 of 𝑅𝑘. 

Let 𝑈 = {𝑤 ∈ 𝑆: ℎ𝑗(𝑤) ≦ 0, 𝑗 ∈ 𝐽 = {1, 2, 3, … , 𝑛}}. 

For such vector minimization problems, the solution is defined by Sawaragi [12]in 

terms of a (properly) efficient solution. 

Definition 2.6 A point 𝑢 ∈ 𝑈 is said to be an efficient solution of the VMP, if and 

only if there exists no 𝑤 ∈ 𝑈 such that 

𝑔(𝑤) ≤ 𝑔(𝑢) 
The set of all efficient solutions of the VMP be non-empty. 
Definition 2.7 An efficient solution 𝑢 ∈ 𝑈 is said to be properly efficient solution 

of the VMP, if and only if there exists a scalar 𝐿 > 0 such that, for all  𝑖 ∈ 𝐼 and for 

all 𝑤 ∈ 𝑈  satisfying 𝑔𝑖(𝑤) < 𝑔𝑖(𝑢),  there exists at least one 𝑞 ∈ 𝐼  such that 

𝑔𝑞(𝑤) > 𝑔𝑞(𝑢) and 

𝑔𝑖(𝑢) − 𝑔𝑖(𝑤)

𝑔𝑞(𝑤) − 𝑔𝑞(𝑢)
≤ 𝐿 

Let 𝑔 and ℎ be locally Lipschitz functions at 𝑢 ∈ 𝑆. We denote (𝑔, ℎ) as the pair of 

functions. The generalized Type I vector-valued functions are defined as below. 

Definition 2.8 The pair(𝑔, ℎ)is called type I function with respect to 𝜃 at 𝑢 ∈ 𝑆 if 

there exists a vector function 𝜃(𝑤, 𝑢)defined on 𝑈 × 𝑆 such that, for all 𝑤 ∈ 𝑈, 
𝑔𝑖(𝑤) − 𝑔𝑖(𝑢) ≧ 𝜑𝑖

𝑇 𝜃(𝑤, 𝑢),         ∀ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢) 
                 −ℎ𝑗(𝑢) ≧ 𝛹𝑗

𝑇 𝜃(𝑤, 𝑢), ∀ 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢) 

If 𝑔𝑖(𝑤) − 𝑔𝑖(𝑢) > 𝜑𝑖
𝑇 𝜃(𝑤, 𝑢) , then (𝑔, ℎ)  is said to be semistrictly-type I 

function with respect to 𝜃 at 𝑢. 

Definition 2.9 The pair(𝑔, ℎ) is called quasi-type I function with respect to 𝜃 at 

𝑢 ∈ 𝑆 if there exists a vector function 𝜃(𝑤, 𝑢)defined on 𝑈 × 𝑆 such that, for all 

𝑤 ∈ 𝑈, 
𝑔𝑖(𝑤) ≦ 𝑔𝑖(𝑢)  ⟹ 𝜑𝑖

𝑇 𝜃(𝑤, 𝑢) ≦ 0,         ∀ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢) 
           −ℎ𝑗(𝑢) ≦ 0 ⟹ 𝛹𝑗

𝑇 𝜃(𝑤, 𝑢) ≦ 0, ∀ 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢) 

Definition 2.10 The pair(𝑔, ℎ) is called pseudo-type I function with respect to 𝜃 at 

𝑢 ∈ 𝑆 if there exists a vector function 𝜃(𝑤, 𝑢)defined on 𝑈 × 𝑆 such that, for all 

𝑤 ∈ 𝑈, 
        𝜑𝑖

𝑇 𝜃(𝑤, 𝑢) ≧ 0 ⟹ 𝑔𝑖(𝑤) ≧ 𝑔𝑖(𝑢),       ∀ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢) 
𝛹𝑗
𝑇 𝜃(𝑤, 𝑢) ≧ 0    ⟹ −ℎ𝑗(𝑢) ≧ 0,              ∀ 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢) 

Definition 2.11 The pair(𝑔, ℎ) is called quasipseudo-type I function with respect 

to 𝜃 at 𝑢 ∈ 𝑆 if there exists a vector function 𝜃(𝑤, 𝑢)defined on 𝑈 × 𝑆 such that, 

for all 𝑤 ∈ 𝑈, 
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𝑔𝑖(𝑤) ≦ 𝑔𝑖(𝑢)  ⟹ 𝜑𝑖
𝑇 𝜃(𝑤, 𝑢) ≦ 0,         ∀ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢) 

𝛹𝑗
𝑇 𝜃(𝑤, 𝑢) ≧ 0    ⟹ −ℎ𝑗(𝑢) ≧ 0,              ∀ 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢) 

If the following inequality holds 

𝛹𝑗
𝑇 𝜃(𝑤, 𝑢) ≧ 0    ⟹ −ℎ𝑗(𝑢) > 0,              ∀ 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢) 

Then the pair (𝑔, ℎ) is called quasistrictly-pseudo-type I function at 𝑢 ∈ 𝑆. 

Definition 2.12 The pair(𝑔, ℎ) is called pseudoquasi-type I function with respect 

to 𝜃 at 𝑢 ∈ 𝑆 if there exists a vector function 𝜃(𝑤, 𝑢)defined on 𝑈 × 𝑆 such that, 

for all 𝑤 ∈ 𝑈, 
        𝜑𝑖

𝑇 𝜃(𝑤, 𝑢) ≧ 0 ⟹ 𝑔𝑖(𝑤) ≧ 𝑔𝑖(𝑢),       ∀ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢) 
           −ℎ𝑗(𝑢) ≦ 0 ⟹ 𝛹𝑗

𝑇 𝜃(𝑤, 𝑢) ≦ 0, ∀ 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢) 

If the following inequality holds 

        𝜑𝑖
𝑇 𝜃(𝑤, 𝑢) ≧ 0 ⟹ 𝑔𝑖(𝑤) > 𝑔𝑖(𝑢),       ∀ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢) 

Then the pair (𝑔, ℎ) is called strictly-pseudoquasi-type I function at 𝑢 ∈ 𝑆. 

 
3. OPTIMALITY CONDITIONS 

Here in this section, we obtain KKT type necessary and sufficient conditions for a 

feasible solution 𝑢 to be an efficient or properly efficient solution for VMP.  

Let 𝐽(𝑢) = {𝑗 ∈ 𝐽 = {1, 2, 3… . , 𝑛}: ℎ𝑗(𝑢) = 0} 

Theorem 3.1 Let 𝑢  be a feasible solution for VMP and scalars 𝜆𝑖 > 0, 𝑖 =
1, 2, 3, … ,𝑚, 𝜇𝑗 ≧ 0, 𝑗 = 1, 2, 3, … , 𝑛, 𝑗 ∈ 𝐽(𝑢) such that 

0 ∈∑𝜆𝑖

𝑚

𝑖=1

 𝜕𝑔𝑖(𝑢) + ∑ 𝜇𝑗
𝑗∈𝐽(𝑢)

 𝜕ℎ𝑗(𝑢)                                                                         (1) 

If (𝑔, ℎ𝑗)is type I with respect to 𝜃 at 𝑢, then 𝑢 is a properly efficient solution for 

VMP. 

Proof: Since (𝑔, ℎ𝑗)is type I with respect to 𝜃 at 𝑢, by definition (2.6), for each 

𝑤 ∈ 𝑈, we have 

∑𝜆𝑖

𝑚

𝑖=1

𝑔𝑖(𝑤) −∑𝜆𝑖

𝑚

𝑖=1

𝑔𝑖(𝑢) ≧∑𝜆𝑖

𝑚

𝑖=1

𝜑𝑖
𝑇 𝜃 − (𝑤, 𝑢),   ∀ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢)             (2) 

0 = − ∑ 𝜇𝑗
𝑗∈𝐽(𝑢)

ℎ𝑗(𝑢) ≧ ∑ 𝜇𝑗
𝑗∈𝐽(𝑢)

𝛹𝑗
𝑇  𝜃(𝑤, 𝑢),         ∀ 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢)                    (3) 

From condition (1), ∃ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢) , 𝑖 = 1, 2, 3, … ,𝑚  and 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢), 𝑗 ∈ 𝐽(𝑢) 

such that 

∑𝜆𝑖

𝑚

𝑖=1

𝜑𝑖 + ∑ 𝜇𝑗
𝑗∈𝐽(𝑢)

𝛹𝑗 = 0                                                                                             (4) 

On using (1), (2) and (3), we get 

∑𝜆𝑖

𝑚

𝑖=1

𝑔𝑖(𝑤) −∑𝜆𝑖

𝑚

𝑖=1

𝑔𝑖(𝑢) ≧ 0 
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𝑖. 𝑒.     ∑𝜆𝑖

𝑚

𝑖=1

𝑔𝑖(𝑤) ≧∑𝜆𝑖

𝑚

𝑖=1

𝑔𝑖(𝑢) 

𝑖. 𝑒.  𝑢 minimizes the following. 

∑𝜆𝑖

𝑚

𝑖=1

𝑔𝑖(𝑤) 

subject to ℎ(𝑢) ≦ 0 

  Therefore, 𝑢 is a properly efficient solution for VMP due to theorem 1 of 

[13]. 

Theorem 3.2 Let 𝑢 be a feasible solution for VMP. If there exist scalars 𝜆𝑖 ≧ 0, 𝑖 =
1, 2, 3, … , 𝑚, 𝜇𝑗 ≧ 0, 𝑗 = 1, 2, 3, … , 𝑛 , 𝑗 ∈ 𝐽(𝑢) such that (1) of Theorem (3.1) 

holds and (𝜆𝑔, ℎ𝑗), where 𝜆𝑔 = (𝜆1𝑔1, 𝜆2𝑔2, 𝜆3𝑔3, … , 𝜆𝑚𝑔𝑚), semistrictly-type I 

with respect to 𝜃 at 𝑢, then 𝑢 is an efficient solution for VMP. 

Proof:From (1) of theorem (3.1), we have 

0 ∈∑𝜆𝑖

𝑚

𝑖=1

 𝜕𝑔𝑖(𝑢) + ∑ 𝜇𝑗
𝑗∈𝐽(𝑢)

 𝜕ℎ𝑗(𝑢) 

∃ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢), 𝑖 = 1, 2, 3, … ,𝑚 and 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢), 𝑗 ∈ 𝐽(𝑢) such that 

∑𝜆𝑖

𝑚

𝑖=1

𝜑𝑖 + ∑ 𝜇𝑗
𝑗∈𝐽(𝑢)

𝛹𝑗 = 0                                                                                        (1) 

Let 𝑢 is not an efficient solution for VMP, then there exists a feasible 𝑤 for VMP 

and an index 𝑙 such that  

𝑔𝑙(𝑤) < 𝑔𝑙(𝑢), 
𝑔𝑝(𝑤) ≦ 𝑔𝑝(𝑢),   ∀ 𝑙 ≠ 𝑝. 

Since  (𝜆𝑔, ℎ𝑗) is semistrictly-type Iwith respect to 𝜃 at 𝑢, we get 

0 > 𝜆𝑖𝜑𝑖
𝑇 𝜃(𝑤, 𝑢),         ∀ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢)                                                                       (2) 

0 =  −ℎ𝑗(𝑢) ≧ 𝛹𝑗
𝑇 𝜃(𝑤, 𝑢), ∀ 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢), 𝑗 ∈ 𝐽(𝑢)                            (3)  

From (2) and (3), we get 

∑𝜆𝑖𝜑𝑖
𝑇 𝜃(𝑤, 𝑢) + ∑ 𝜇𝑗𝛹𝑗

𝑇 𝜃(𝑤, 𝑢) < 0                                                           (4)

𝑗∈𝐽(𝑢)

𝑚

𝑖=1

 

∀ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢),      ∀ 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢), 𝑗 ∈ 𝐽(𝑢) 

Thus, inequality (4) contradicts (1). 
Hence, 𝑢 is an efficient solution for VMP. 

Theorem 3.3 Let 𝑢 be a feasible solution for VMP and there exist scalars 𝜆𝑖 ≧
0, 𝑖 = 1, 2, 3, … ,𝑚, ∑ 𝜆𝑖 = 1,

𝑚
𝑖=1 𝜇𝑗 ≧ 0, 𝑗 = 1, 2, 3, … , 𝑛, 𝑗 ∈ 𝐽(𝑢) such that (1) of 

theorem (3.1) holds. If (𝜆𝑔, 𝜇𝑗ℎ𝑗), where 𝜆𝑔 = (𝜆1𝑔1, 𝜆2𝑔2, 𝜆3𝑔3, … , 𝜆𝑚𝑔𝑚), is 

pseudoquasi-type Iwith respect to 𝜃 at 𝑢, then 𝑢 is a properly efficient solution for 

VMP. 
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Proof: Since ℎ𝑗(𝑢) = 0, 𝜇𝑗 ≧ 0 and (𝜆𝑔, 𝜇𝑗ℎ𝑗) is pseudoquasi-type Iwith respect 

to 𝜃 at 𝑢, therefore for all 𝑤 ∈ 𝑈, we have 

𝛹𝑗
𝑇 𝜃(𝑤, 𝑢) ≦ 0, ∀ 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢) 

Using assumption (1) of theorem (3.1), ∃ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢), 𝑖 = 1, 2, 3, … ,𝑚 such that 

𝜆𝑖𝜑𝑖
𝑇 𝜃(𝑤, 𝑢) ≧ 0, ,   𝑖 = 1, 2, 3, … ,𝑚, ∀ 𝑤 ∈ 𝑈 

Since (𝜆𝑔, 𝜇𝑗ℎ𝑗) is pseudoquasi-type Iwith respect to 𝜃 at 𝑢, we get 

∑𝜆𝑖

𝑚

𝑖=1

𝑔𝑖(𝑤) ≧∑𝜆𝑖

𝑚

𝑖=1

𝑔𝑖(𝑢), ∀ 𝑤 ∈ 𝑈  

Therefore, 𝑢 minimizes ∑ 𝜆𝑖
𝑚
𝑖=1 𝑔𝑖(𝑤), subject to ℎ(𝑤) ≦ 0. 

Hence, 𝑢 is a properly efficient solution for VMP as in theorem 3.1. 

Theorem 3.4 Let 𝑢 be a feasible solution for VMP and there exist scalars 𝜆𝑖 ≧
0, 𝑖 = 1, 2, 3, … ,𝑚, ∑ 𝜆𝑖 = 1,

𝑚
𝑖=1 𝜇𝑗 ≧ 0, 𝑗 = 1, 2, 3, … , 𝑛, 𝑗 ∈ 𝐽(𝑢) such that (1) of 

theorem (3.1) holds. If (𝜆𝑔, 𝜇𝑗ℎ𝑗), where 𝜆𝑔 = (𝜆1𝑔1, 𝜆2𝑔2, 𝜆3𝑔3, … , 𝜆𝑚𝑔𝑚), is 

strictly-pseudoquasi-type Iwith respect to 𝜃 at 𝑢, then 𝑢 is an efficient solution for 

VMP. 

Proof:From (1) of theorem (3.1), we have 

0 ∈∑𝜆𝑖

𝑚

𝑖=1

 𝜕𝑔𝑖(𝑢) + ∑ 𝜇𝑗
𝑗∈𝐽(𝑢)

 𝜕ℎ𝑗(𝑢) 

∃ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢), 𝑖 = 1, 2, 3, … ,𝑚 and 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢), 𝑗 ∈ 𝐽(𝑢) such that 

∑𝜆𝑖

𝑚

𝑖=1

𝜑𝑖 + ∑ 𝜇𝑗
𝑗∈𝐽(𝑢)

𝛹𝑗 = 0                                                                                   (1) 

Let 𝑢 is not an efficient solution for VMP, then there exists a feasible 𝑤 for VMP 

and an index 𝑙 such that  

𝑔𝑙(𝑤) < 𝑔𝑙(𝑢),  

𝑔𝑝(𝑤) ≦ 𝑔𝑝(𝑢),   ∀ 𝑙 ≠ 𝑝. 

Since  (𝜆𝑔, 𝜇𝑗ℎ𝑗) is strictly-pseudoquasi-type Iwith respect to 𝜃 at 𝑢 and ℎ𝑗(𝑢) =

0, we get 

𝜆𝑖𝜑𝑖
𝑇 𝜃(𝑤, 𝑢) < 0,         ∀ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢)                                                                   (2)  

𝜇𝑗𝛹𝑗
𝑇 𝜃(𝑤, 𝑢) ≤ 0,        ∀ 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢), 𝑗 ∈ 𝐽(𝑢) (3) 

From (2) and (3), we get 

∑𝜆𝑖𝜑𝑖
𝑇 𝜃(𝑤, 𝑢) + ∑ 𝜇𝑗𝛹𝑗

𝑇 𝜃(𝑤, 𝑢) < 0                                                      (4)

𝑗∈𝐽(𝑢)

𝑚

𝑖=1

 

∀ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢),      ∀ 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢), 𝑗 ∈ 𝐽(𝑢) 

Thus, inequality (4) contradicts (1). Hence, 𝑢 is an efficient solution for VMP. 

Definition 3.1 Let 𝑔𝑖, 𝑖 = 1, 2, 3, … ,𝑚and ℎ𝑗 , 𝑗 = 1, 2, 3, … , 𝑛 be locally Lipsticz 

functions at a point 𝑢 ∈ 𝑈.  
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  Problem VMP satisfies the Cottle constraint qualification at 𝑢  if either 

ℎ𝑗(𝑢) < 0 for all 𝑗 = 1, 2, 3, … , 𝑛or 0 ∉ 𝑐𝑜𝑛𝑣{𝜕ℎ𝑗(𝑢): ℎ𝑗(𝑢) = 0}, where 𝑐𝑜𝑛𝑣 𝑆 

denotes the convex hull of a set 𝑆.  

Theorem 3.5 Assume that 𝑢 is an efficient solution for VMP at which the Cottle 

constraint qualification is satisfied. Then there exist scalars 𝜆𝑖 ≧ 0, 𝑖 =
1, 2, 3, … ,𝑚, ∑ 𝜆𝑖 = 1,

𝑚
𝑖=1 𝜇𝑗 ≧ 0, 𝑗 = 1, 2, 3, … , 𝑛 such that 

0 ∈∑𝜆𝑖

𝑚

𝑖=1

 𝜕𝑔𝑖(𝑢) +∑𝜇𝑗  𝜕ℎ𝑗(𝑢)

𝑛

𝑗=1

, 

𝜇𝑗ℎ𝑗(𝑢) = 0, ∀ 𝑗 = 1, 2, 3, … , 𝑛 

 
4. DUALITY 

Wolfe type and Mond-Weir type duals under generalized Type Iassumption are 

taken in this section.  

4.1 Wolfe Type Duality (WD): 

We consider the following Wolfe [15] type dual for VMP. 

(WD)𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒     𝑔(𝑢) + ∑ 𝜇𝑗  𝜕ℎ𝑗(𝑢)𝑒
𝑛
𝑗=1 ,                                                            (1) 

 subject to the following: 

0 ∈∑𝜆𝑖

𝑚

𝑖=1

 𝜕𝑔𝑖(𝑢) +∑𝜇𝑗  𝜕ℎ𝑗(𝑢)                                                                               (2)

𝑛

𝑗=1

 

 𝜆𝑖 ≧ 0, 𝑖 = 1, 2, 3, … ,𝑚                                                                                         (3) 

∑ 𝜆𝑖 = 1                                                                                                                         (4)

𝑚

𝑖=1

 

𝜇𝑗 ≧ 0, 𝑗 = 1, 2, 3, … , 𝑛                                                                                        (5) 

where  𝑒 = (1, 1, 1, … , 1) ∈ 𝑅𝑚. 
Theorem 4.1.1 (Weak Duality) Let 𝑤 be feasible for VMP and (𝑢, 𝜆, 𝜇) feasible 

for WD. Assume that either (𝑎) or (𝑏) holds:  
(𝑎)(𝑔, ℎ) is Type I at 𝑢 with respect to 𝜃 and 𝜆 > 0; 
(𝑏)(𝑔, ℎ) is semistrictly-Type I at 𝑢 with respect to 𝜃. 
Then the following cannot hold: 

𝑔(𝑤) ≤ 𝑔(𝑢) +∑𝜇𝑗 𝜕ℎ𝑗(𝑢)𝑒

𝑛

𝑗=1

 

Proof:We prove the theorem by contradiction. 

(𝑎)Suppose the following holds. 

𝑔(𝑤) ≤ 𝑔(𝑢) +∑𝜇𝑗 𝜕ℎ𝑗(𝑢)𝑒

𝑛

𝑗=1

 

Since 𝜆 > 0, we find 
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∑𝜆𝑖

𝑚

𝑖=1

[𝑔𝑖(𝑤) − { 𝑔(𝑢) +∑𝜇𝑗 𝜕ℎ𝑗(𝑢)}] < 0

𝑛

𝑗=1

                                            (1) 

Since (𝑔, ℎ) is Type I at 𝑢 with respect to 𝜃, (1) implies 

∑𝜆𝑖𝜑𝑖
𝑇 𝜃(𝑤, 𝑢) +∑𝜇𝑗𝛹𝑗

𝑇 𝜃(𝑤, 𝑢)

𝑛

𝑗=1

<

𝑚

𝑖=1

0                                                   (2) 

∀ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢),      ∀ 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢) 

∃  𝜑𝑖
∗ ∈ 𝜕𝑔𝑖(𝑢)  and  𝛹𝑗

∗ ∈ 𝜕ℎ𝑗(𝑢) such that 

∑𝜆𝑖

𝑚

𝑖=1

𝜑𝑖
∗ +∑𝜇𝑗𝛹𝑗

∗

𝑛

𝑗=1

= 0                                                                                   (3) 

This implies that 

∑𝜆𝑖𝜑𝑖
∗ 𝜃(𝑤, 𝑢) +∑𝜇𝑗𝛹𝑗

∗ 𝜃(𝑤, 𝑢)

𝑛

𝑗=1

= 0                                                    

𝑚

𝑖=1

(4) 

which contradicts (2). This completes the proof. 
(𝑏)Suppose the following holds. 

𝑔(𝑤) ≤ 𝑔(𝑢) +∑𝜇𝑗 𝜕ℎ𝑗(𝑢)𝑒

𝑛

𝑗=1

 

We find the following inequality. 

∑𝜆𝑖

𝑚

𝑖=1

[𝑔𝑖(𝑤) − { 𝑔(𝑢) +∑𝜇𝑗 𝜕ℎ𝑗(𝑢)}] ≦ 0

𝑛

𝑗=1

                                          (5) 

Since (𝑔, ℎ) is semistrictly-Type I at 𝑢 with respect to 𝜃, (5) implies 

∑𝜆𝑖𝜑𝑖
𝑇 𝜃(𝑤, 𝑢) +∑𝜇𝑗𝛹𝑗

𝑇 𝜃(𝑤, 𝑢)

𝑛

𝑗=1

<

𝑚

𝑖=1

0                                                 (6) 

∀ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢),      ∀ 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢) 

∃  𝜑𝑖
∗ ∈ 𝜕𝑔𝑖(𝑢)  and  𝛹𝑗

∗ ∈ 𝜕ℎ𝑗(𝑢) such that 

∑𝜆𝑖

𝑚

𝑖=1

𝜑𝑖
∗ +∑𝜇𝑗𝛹𝑗

∗

𝑛

𝑗=1

= 0                                                                                (7) 

This implies that 

∑𝜆𝑖𝜑𝑖
∗ 𝜃(𝑤, 𝑢) +∑𝜇𝑗𝛹𝑗

∗ 𝜃(𝑤, 𝑢)

𝑛

𝑗=1

= 0                                                  

𝑚

𝑖=1

(8) 

which contradicts (6). This completes the proof. 

Theorem 4.1.2 (Strong Duality) Let 𝑤̅ be an efficient solution for VMP at which 

the Cottle constraint qualification is satisfied. Then there exist 𝜆̅ ∈ 𝑅𝑚 and 𝜇̅ ∈ 𝑅𝑛 

such that (𝑤̅, 𝜆̅, 𝜇̅) is feasible for WD.  
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  If also (𝑔, ℎ) is semistrictly-Type I with respect to 𝜃at 𝑢 ∈ 𝑈, then (𝑤̅, 𝜆̅, 𝜇̅) 
is an efficient solution for WD. 

Proof: Since 𝑤̅ is an efficient solution for VMP at which the Cottle constraint 

qualification is satisfied at 𝑤̅ , from theorem 3.5 , there exist scalars  

𝜆̅𝑖 ≧ 0, 𝑖 = 1, 2, 3, … ,𝑚 , ∑ 𝜆𝑖̅
𝑚
𝑖=1 = 1, 𝜇̅𝑗 ≧ 0, 𝑗 = 1, 2, 3, … , 𝑛  such that (1)  and 

(2) of theorem 3.5 hold. 

Hence (𝑤̅, 𝜆̅, 𝜇̅) is feasible for WD. 

If (𝑤̅, 𝜆̅, 𝜇̅) is not an efficient solution for WD, then there exists a feasible solution 

(𝑢, 𝜆, 𝜇) for WD such that 

{𝑔(𝑤̅) +∑𝜇̅𝑗𝜕ℎ𝑗(𝑤̅)𝑒}

𝑛

𝑗=1

 ≤ {𝑔(𝑢) +∑𝜇𝑗  𝜕ℎ𝑗(𝑢)𝑒

𝑛

𝑗=1

}  

which contradicts part (𝑏) of theorem 4.1.1 for feasible solution 𝑤̅ for VMP and 

(𝑢, 𝜆, 𝜇) for WD. 

Hence (𝑤̅, 𝜆̅, 𝜇̅) is an efficient solution for WD. 

4.2  Mond-WeirType Duality (MWD): 

We consider the following Mond-Weir [16] type dual for problem VMP: 

(MWD)𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒     𝑔(𝑢),                              (1) 
 subject to the following: 

0 ∈∑𝜆𝑖

𝑚

𝑖=1

 𝜕𝑔𝑖(𝑢) +∑𝜇𝑗  𝜕ℎ𝑗(𝑢)                                                                               (2)

𝑛

𝑗=1

 

 𝜆𝑖 ≧ 0, 𝑖 = 1, 2, 3, … ,𝑚                                                                                         (3) 

∑ 𝜆𝑖 = 1                                                                                                                         (4)

𝑚

𝑖=1

 

𝜇𝑗ℎ𝑗(𝑢) ≧ 0, 𝑗 = 1, 2, 3, … , 𝑛                                                                               (5) 

𝜇𝑗 ≧ 0, 𝑗 = 1, 2, 3, … , 𝑛                                                                                        (6) 

 

Theorem 4.2.1 (Weak Duality) Let 𝑤 be feasible for VMP and (𝑢, 𝜆, 𝜇) feasible 

for MWD. If (𝜆𝑔, 𝜇ℎ) is quasistrictly-pseudo-Type I at 𝑢 with respect to 𝜃, then 

𝑔(𝑤) ≰ 𝑔(𝑢) 
Proof :We prove the theorem by contradiction. 

Suppose the following holds. 

𝑔(𝑤) ≤ 𝑔(𝑢) 
then there exists an index 𝑙 such that  

𝑔𝑙(𝑤) < 𝑔𝑙(𝑢), 𝑔𝑝(𝑤) ≦ 𝑔𝑝(𝑢),   ∀ 𝑙 ≠ 𝑝. 

Since (𝜆𝑔, 𝜇ℎ) is quasistrictly-pseudo-Type I at 𝑢  with respect to 𝜃 , the above 

inequalities and condition (5) of (4.2) imply 

∑𝜆𝑖𝜑𝑖
𝑇 𝜃(𝑤, 𝑢) ≦ 0, ∀ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢)(1) 

𝑚

𝑖=1
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and 

∑𝜇𝑗𝛹𝑗
𝑇 𝜃(𝑤, 𝑢)

𝑛

𝑗=1

< 0,      ∀ 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢)                                                                    (2) 

From (1) and (2), we get 

∑𝜆𝑖𝜑𝑖
𝑇 𝜃(𝑤, 𝑢) +∑𝜇𝑗𝛹𝑗

𝑇 𝜃(𝑤, 𝑢)

𝑛

𝑗=1

<

𝑚

𝑖=1

0                                                                  (3) 

∀ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢),      ∀ 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢) 

From condition (2), ∃  𝜑𝑖
∗ ∈ 𝜕𝑔𝑖(𝑢)  and  𝛹𝑗

∗ ∈ 𝜕ℎ𝑗(𝑢) such that 

∑𝜆𝑖

𝑚

𝑖=1

𝜑𝑖
∗ +∑𝜇𝑗𝛹𝑗

∗

𝑛

𝑗=1

= 0                                                                                                (4) 

This implies that 

∑𝜆𝑖𝜑𝑖
∗ 𝜃(𝑤, 𝑢) +∑𝜇𝑗𝛹𝑗

∗ 𝜃(𝑤, 𝑢)

𝑛

𝑗=1

=

𝑚

𝑖=1

0                                                                   (5) 

which contradicts (3). 
Hence the following cannot hold: 

𝑔(𝑤) ≤ 𝑔(𝑢) 
Theorem 4.2.2 (Strict Converse Duality) Let 𝑤̅ be feasible solution for VMP and 

let (𝑤̅, 𝜆̅, 𝜇̅) be feasible for MWD such that 

∑𝜆̅𝑖

𝑚

𝑖=1

𝑔(𝑤̅) ≦∑𝜆̅𝑖

𝑚

𝑖=1

𝑔(𝑢̅),     𝑖 = 1, 2, 3, … ,𝑚                                                           (1) 

If (𝜆̅𝑔, 𝜇̅ℎ) is quasistrictly-pseudo-Type I at 𝑢̅ with respect to 𝜃, then 𝑤̅ = 𝑢̅. 

Proof:We prove the theorem by contradiction. 

Let 𝑤̅ ≠ 𝑢̅ 

Since (𝑤̅, 𝜆̅, 𝜇̅) is feasible for MWD, then from condition (2)of (4.2) there exist 

∃ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢̅), 𝑖 = 1, 2, 3, … ,𝑚 and 𝛹𝑗 ∈ 𝜕ℎ𝑗(𝑢̅), 𝑗 = 1, 2, 3, … , 𝑛 such that 

∑𝜆̅𝑖 𝜑𝑖

𝑚

𝑖=1

+∑𝜇̅𝑗 𝛹𝑗

𝑛

𝑗=1

= 0                                                                                               (2)  

Since (𝜆̅𝑔, 𝜇̅ℎ) is quasistrictly-pseudo-Type I at 𝑢̅ with respect to 𝜃, we find 

𝜆̅𝑖𝑔𝑖(𝑤̅) ≦ 𝜆̅𝑖𝑔𝑖(𝑢̅) ⇒ 𝜆̅𝑖𝜑𝑖
𝑇 𝜃(𝑤̅, 𝑢̅) ≦ 0,    ∀ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢̅)                       (3) 

and 

−𝜇̅𝑗ℎ𝑗(𝑢̅)≦ 0 ⇒ 𝜇̅𝑗𝛹𝑖
𝑇 𝜃(𝑤̅, 𝑢̅) < 0,    ∀ 𝛹𝑖 ∈ 𝜕ℎ𝑗(𝑢̅)(4) 

Combining (1) and (3), we have 

𝜆̅𝑖𝜑𝑖
𝑇 𝜃(𝑤̅, 𝑢̅) ≦ 0,    ∀ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢̅), 

which implies that 

∑ 𝜆̅𝑖𝜑𝑖
𝑇 𝜃(𝑤̅, 𝑢̅) ≦ 0,      ∀ 𝜑𝑖 ∈ 𝜕𝑔𝑖(𝑢̅)

𝑚
𝑖=1       (5) 
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Since (𝑤̅, 𝜆̅, 𝜇̅) is feasible for MWD, we have 

−𝜇̅𝑗ℎ𝑗(𝑢̅) ≦ 0,   𝑗 = 1, 2, 3, … , 𝑛 

Using (4) in above inequality, we get 

𝜇̅𝑗𝛹𝑖
𝑇 𝜃(𝑤̅, 𝑢̅) < 0,            𝑗 = 1, 2, 3, … , 𝑛 

which implies that 

∑𝜇̅𝑗𝛹𝑗
𝑇 𝜃(𝑤̅, 𝑢̅) < 0                                                                                                      (6)

𝑛

𝑗=1

 

Combining (5) and (6), we get 

∑𝜆̅𝑖𝜑𝑖
𝑇 𝜃(𝑤̅, 𝑢̅) +

𝑚

𝑖=1

∑𝜇̅𝑗𝛹𝑗
𝑇 𝜃(𝑤̅, 𝑢̅) < 0                                                                (7)

𝑛

𝑗=1

 

which contradicts (2). 
Hence 𝑤̅ = 𝑢̅. 

 
5. CONCLUSIONS: 

  Finally we claim that we have obtained KKT type necessary and sufficient 

conditions for a feasible solution to be an efficient solution or properly efficient 

solution. Also we have proved different types of duality theorems for Wolfe type 

and Mond-Weir type duals under the generalized Type I assumptions. 
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Abstract 

 

  Here we have established some new finite integrals involving product of 

hypergeometric functions, generalized hypergeometric functions with exponential 

functions also we have found and studied some  new finite integrals involving the 

product of 𝑀-Series and 𝐼-function with exponential functions , which are more 

generalized in nature and able to produce many new results. Inayat Hussain [5] 

introduced that The 𝑀-series is a particular case of 𝐻̅-function. In 2008 Saxena 

V.P. [16] gave the concept of 𝐼-function and M-Series which are strongly helpful 

to solve the problems of various fields’ especially mathematical physics, biology, 

data mining signal and image processing and many more. 

 

Keywords:  Exponential function, Fox H-function, 𝐻̅-function, hypergeometric 

function, Saxena’s 𝐼-function,  𝑀-series, Mellin-Barnes type integral. 

 

1. Introduction 

  Many researchers Heine, Goursat, Pochhamar, Appell and others 

generalized Gauss hypergeomtric function in their own ways. Generalized ordinary 

hypergeometric series is defined in the following manner: 

 𝐹𝑞𝑝
 [(𝑎𝑝); (𝑏𝑞); 𝑧] = 𝐹𝑞𝑝

 [ 𝑧
(𝑏𝑞);

(𝑎𝑝); ] = ∑
∏ (𝑎𝑗)𝑛
𝑝
𝑗=1

∏ (𝑏𝑗)𝑛
𝑞
𝑗=1

∞

𝑛=0

𝑧𝑛

𝑛!
 ,                              (1.1) 

where, for brevity, (𝑎𝑝) denotes the array of 𝑝 parameters 𝑎1, ⋯ , 𝑎𝑝 with similar 

interpretation for (𝑏𝑞) etc. 𝐹𝑞𝑝
 

 is not defined if any denominator parameter 𝑏𝑞 is a 

negative integer or zero . In 1937-38 Mac Robert  introduced a function known as 

Mac Robert's 𝐸-function [14], explaining the meaning of  𝐹𝑞𝑝
  function even when 

𝑝 > 𝑞 + 1.In his dedicated work [10,11,12]  Meijer gave the concept of 𝐺-function 

as a sum of certain 𝐹𝑞𝑝
  functions. Now 𝐺-function is a generalization of higher 

transcendental function given in [1]. 
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 In order to get the solutions of some  functional equations  𝐻-function 

occurs, which was studied by many researchers such as Bochner [2] 

,Chandrashekhran and Narsimhan [3].Further [6,8,9,21,23] extended the concept 

and generalized the results existing  already . 

            Fox [4] has defined the 𝐻-function in terms of a general Mellin–Barnes type 

integral as follows:  

   𝐻𝑝,𝑞
𝑚,𝑛 [ 𝑥 |

(𝑎𝑗  ,  𝛼𝑗)1,𝑝 

(𝑏𝑗  ,  𝛽𝑗)1,𝑞 

]  =  
1

2𝜋𝜔
∫  𝜃(𝑠)𝑥𝑠𝑑𝑠,                            (1.2)

 

ℒ

 

where 𝜔 = √−1 , 𝑥(≠ 0)  is a complex variable and 𝑥𝑠 = exp[𝑠 {log|𝑥| +
 𝜔 arg 𝑥}] in which log |𝑥| represents the natural logarithm of |𝑥| and 𝑎𝑟𝑔 𝑥 is not 

necessarily the principal value. An empty product is interpreted as unity. Also, 

𝜃(𝑠) =
∏ Γ(𝑏𝑗 − 𝛽𝑗𝑠
𝑚
𝑗=1 )  ∏ Γ(1 − 𝑎𝑗 + 𝛼𝑗𝑠

𝑛
𝑗=1 )

∏ Γ(1 − 𝑏𝑗 + 𝛽𝑗𝑠
𝑞
𝑗=𝑚+1 )  ∏ Γ(𝑎𝑗 − 𝛼𝑗𝑠

𝑝
𝑗=𝑛+ 1 )

                       (1.3) 

  The 𝐼-function which was produced by Saxena [15] in 1982 , further studied 

by many author’s G. D. Vaishya, R. Jain and R. C. Verma [22], C. K. Sharma [19] 

etc. 

             In this present piece of work, we are defining and representing the 𝐼 -
function as follow:   

 

𝐼𝑝𝑖,𝑞𝑖∶𝑟
𝑚,𝑛 [𝑧] = 𝐼𝑝𝑖,𝑞𝑖∶𝑟

𝑚,𝑛 [𝑧 |
(𝑎𝑗,𝛼𝑗)1,𝑛

;(𝑎𝑗𝑖,𝛼𝑗𝑖)𝑛+1,𝑝𝑖
(𝑏𝑗,𝛽𝑗)1,𝑚

;(𝑏𝑗𝑖,𝛽𝑗𝑖)𝑚+1,𝑞𝑖

] =
1

2𝜋𝑖
∫ 𝜙(𝜉)𝑧𝜉𝑑𝜉 ,     
ℒ

             (1.4) 

 

where 

 

𝜙(𝜉) =
∏ 𝛤(𝑏𝑗 − 𝛽𝑗𝜉
𝑚
𝑗=1 )  ∏ 𝛤(1 − 𝑎𝑗 + 𝛼𝑗𝜉

𝑛
𝑗=1 )

∑ {∏ 𝛤(1 − 𝑏𝑗𝑖 + 𝛽𝑗𝑖𝜉
𝑞𝑖
𝑗=𝑚+1 )  ∏ 𝛤(𝑎𝑗𝑖 − 𝛼𝑗𝑖𝜉

𝑝𝑖
𝑗=𝑛+ 1 )}𝑟

𝑖=1

,         (1.5) 

 

𝑝𝑖(𝑖 = 1,2, … , 𝑟), 𝑞𝑖(𝑖 = 1,2, … , 𝑟),𝑚, 𝑛  are integers satisfying 0 ≤ 𝑛 ≤ 𝑝𝑖, 0 ≤
𝑚 ≤ 𝑞𝑖 (𝑖 = 1,2, … , 𝑟); 𝑟 is finite, 𝛼𝑗 , 𝛽𝑗 , 𝛼𝑗𝑖 , 𝛽𝑗𝑖 are real and positive; 𝑎𝑗 , 𝑏𝑗 , 𝑎𝑗𝑖, 𝑏𝑗𝑖 

are complex numbers and ℒ is the path of integration separating the increasing and 

decreasing sequences of poles of the integrand and the convergence, existence 

conditions and other details of the 𝐼-function, one can refer to [16, p. 26-27]. The 

integral converges, if  |𝑎𝑟𝑔 𝑥| <
1

2
𝜋𝛺𝑖, where 

𝛺𝑖 =∑𝛼𝑗 −

𝑛

𝑗=1

∑ 𝛼𝑗 +

𝑝𝑖

𝑗=𝑛+1

∑𝛽𝑗 −

𝑚

𝑗=1

∑ 𝛽𝑗

𝑞𝑖

𝑗=𝑚+1

> 0  

𝑎𝑛𝑑 𝑇 =∑ 𝑏𝑗
𝑞𝑖

𝑗=1
−∑ 𝑎𝑗

𝑝𝑖

𝑗=1
> 0      (1.6)  
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  Recently Sharma Manoj introduce the M- series and discussed their 

properties. The M series is a generalization of Hypergeometric function [21], the 

𝑀-Series is a particular case of the 𝐻̅- function of Inayat-Hussain [5] and A special 

role in the application of fractional calculus operators and in the solution of 

fractional order differential equations. The hypergeometric function and Mittag-

Laffer function follow as its particular case of [7], [17]. Therefore, it is very 

interesting. We defined by means of the following series expansion: 

𝑀𝑄
𝜏

𝑃 (𝑎1… . 𝑎𝑝; , 𝑏1… . 𝑏𝑞; 𝑥) = ∑
(𝑎1)𝑘…(𝑎𝑝)𝑘
(𝑏1)𝑘…(𝑏𝑞)𝑘

∞
𝑘=0  

𝑥𝑘

Γ(𝜏𝑘+1)
                       (1.7)   

  Here   R(τ) > 0, (aj)k
 (bj)k  are pochammer symbols. For convergence 

conditions and other details of the generalized M -series see Sharma and Jain [18]. 

  In the next section we will discuss the existing results, lemma and theorems 

which are necessary establish our main results.  

 

2. Existing Works  

            The well-known Mellin inversion theorem which is known as Mellin 

transformation of the I- function may be given as    

               ∫ 𝑥−𝑠𝐼𝑝𝑖,𝑞𝑖∶𝑟
𝑚,𝑛 [𝑧 |

(𝑎𝑗,𝛼𝑗)1,𝑛
;(𝑎𝑗𝑖,𝛼𝑗𝑖)𝑛+1,𝑝𝑖

(𝑏𝑗,𝛽𝑗)1,𝑚
;(𝑏𝑗𝑖,𝛽𝑗𝑖)𝑚+1,𝑞𝑖

] 𝑑𝑥 = 𝑎−𝑠𝜃(−𝑠)
∞

0
 

 

= 𝑎−𝑠
∏ 𝛤(𝑏𝑗 − 𝛽𝑗𝜉
𝑚
𝑗=1 )  ∏ 𝛤(1 − 𝑎𝑗 + 𝛼𝑗𝜉

𝑛
𝑗=1 )

∑ {∏ 𝛤(1 − 𝑏𝑗𝑖 + 𝛽𝑗𝑖𝜉
𝑞𝑖
𝑗=𝑚+1 )  ∏ 𝛤(𝑎𝑗𝑖 − 𝛼𝑗𝑖𝜉

𝑝𝑖
𝑗=𝑛+ 1 )}𝑟

𝑖=1

   (2.1) 

integral converges, if  |𝑎𝑟𝑔 𝑥| <
1

2
𝜋𝛺𝑖, and follow the conditions (1.3) and 

 − min
1≤𝑗≤𝑚

[𝑅𝑒(
𝑏𝑗

𝛽𝑗
)] < 𝑅𝑒(𝑠) < min

1≤𝑗≤𝑛
[𝑅𝑒 {

1−𝑎𝑗

∝𝑗
, }] 

Lemma 2.1: From the E.D.Rainville [13]. We have 

    ∑ ∑ 𝐴(𝑘, 𝑛)∞
𝑘=0 = ∑ ∑ 𝐴(𝑘, 𝑛 − 𝑘)       (2.2)𝑛

𝑘=0
∞
𝑛=0

∞
𝑛=0   

 

4. Main Results 

              Here we have established the following integrals in the form of 

composition of exponential function, I-function and M- series. 

Integral- I 

∫𝑥𝜌−1 (𝑡 − 𝑥)𝜎−1𝑒−𝑥𝑦 𝑀𝑄
𝜏

𝑃  [(𝑔𝑃); (ℎ𝑄); 𝑎𝑥
𝛾(𝑡 − 𝑥)𝛿]

𝑡

0

 

𝐼𝑝𝑖,𝑞𝑖∶𝑟
𝑚,𝑛 [𝑧𝑥𝜇(𝑡 − 𝑥)𝜈 |

(𝑎𝑗 , 𝛼𝑗)1,𝑛; (𝑎𝑗𝑖 , 𝛼𝑗𝑖)𝑛+1,𝑝𝑖
(𝑏𝑗 , 𝛽𝑗)1,𝑚; (𝑏𝑗𝑖, 𝛽𝑗𝑖)𝑚+1,𝑞𝑖

] 𝑑𝑥 
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= 𝑒−𝑡𝑦𝑡𝜌+𝜎−1∑ 

∞

𝑢=0

∑𝑡(𝛾+𝛿−1)𝑘+𝑢  
𝑦𝑢−𝑘

(𝑢 − 𝑘)!
 𝑓(𝑘)

𝑛

𝑘=0

𝐼𝑝𝑖+2,𝑞𝑖+1:𝑟
𝑚,𝑛+2 [𝑧𝑡𝜇+𝜈 |

𝑃1
𝑄1
],    

(3.1) 

where 𝑃1 and 𝑄1 denotes the parameter 

(1 − 𝜌 − 𝛾𝑘, 𝜇), (1 − 𝜎 − (𝛿 − 1)𝑘 − 𝑢, 𝜈), (𝑎𝑗 , 𝛼𝑗)1,𝑛; (𝑎𝑗𝑖, 𝛼𝑗𝑖)𝑛+1,𝑝𝑖
 

and 

(𝑏𝑗 , 𝛽𝑗)1,𝑚; (𝑏𝑗𝑖, 𝛽𝑗𝑖)𝑚+1,𝑞𝑖
, (1 − 𝜌 − 𝜎 − (𝛾 + 𝛿 − 1)𝑘 − 𝑢 − 𝛿𝑘, 𝜇 + 𝜈) 

respectively. Also 

𝑓(𝑘) =
(𝑔1)𝑘…(𝑔𝑝)𝑘
(ℎ1)𝑘…(ℎ𝑝)𝑘

𝑎𝑘

Γ(𝜏𝑘 + 1)
.                                                        (3.2) 

The conditions of validity of the integral (3.1) are 

a. 𝑅𝑒(𝜌) + 𝜇 min
1≤𝑗≤𝑚

[𝑅𝑒(𝑏𝑗 𝛽𝑗⁄ )] > 0 and 𝑅𝑒(𝜎) + 𝜈 min
1≤𝑗≤𝑚

[𝑅𝑒(𝑏𝑗 𝛽𝑗⁄ )] > 0 

b. 𝑅𝑒(𝜇) ≥ 0, 𝑅𝑒(𝜈) ≥ 0, (not both zero simultaneously), 

c.  𝛾, 𝛿,  are non-negative integers, such that 𝛾 + 𝛿 ≥ 1 , 𝜏 ∈ 𝐶, 𝑅𝑒(𝜏) > 0, 

𝑇 > 0, 𝛺𝑖 > 0, |arg 𝑧| <
1

2
𝜋𝛺𝑖,  where 

Ω𝑖 =∑𝛼𝑗 −

𝑛

𝑗=1

∑ 𝛼𝑗 +

𝑝𝑖

𝑗=𝑛+1

∑𝛽𝑗 −

𝑚

𝑗=1

∑ 𝛽𝑗

𝑞𝑖

𝑗=𝑚+1

> 0     𝑎𝑛𝑑    

 

   𝑇 =∑ 𝑏𝑗
𝑞𝑖

𝑗=1
−∑ 𝑎𝑗

𝑝𝑖

𝑗=1
> 0.   

 

Integral- II 

∫𝑥𝜌−1 (𝑡 − 𝑥)𝜎−1𝑒−𝑥𝑦 𝑀𝑄
𝜏

𝑃 [(𝑔𝑃); (ℎ𝑄); 𝑎𝑥
𝛾(𝑡 − 𝑥)𝛿]

𝑡

0

 

𝐼𝑝𝑖,𝑞𝑖∶𝑟
𝑚,𝑛 [𝑧𝑥−𝜇(𝑡 − 𝑥)−𝜈 |

(𝑎𝑗, 𝛼𝑗)1,𝑛; (𝑎𝑗𝑖 , 𝛼𝑗𝑖)𝑛+1,𝑝𝑖
(𝑏𝑗, 𝛽𝑗)1,𝑚; (𝑏𝑗𝑖 , 𝛽𝑗𝑖)𝑚+1,𝑞𝑖

] 𝑑𝑥 

= 𝑒−𝑡𝑦𝑡𝜌+𝜎−1  ∑  

∞

𝑢=0

∑𝑡(𝛾+𝛿−1)𝑘+𝑢  
𝑦𝑢−𝑘

(𝑢 − 𝑘)!
 𝑓(𝑘)

𝑛

𝑘=0

𝐼𝑝𝑖+1,𝑞𝑖+2:𝑟
𝑚+2,𝑛 [𝑧𝑡−𝜇−𝜈 |

𝑃2
𝑄2
],     

(3.3) 
provided that 

𝑅𝑒(𝜌) − 𝜇 min
1≤𝑗≤𝑛

[𝑅𝑒((𝑎𝑗 − 1) 𝛼𝑗⁄ )] > 0;  𝑅𝑒(𝜎) − 𝜈 min
1≤𝑗≤𝑛

[𝑅𝑒((𝑎𝑗 − 1) 𝛼𝑗⁄ )] > 0 

and the sets of conditions (b) to (c) given with (4) are satisfied [𝑓(𝑘) is given by 

(3.2)]. Here 
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𝑃2 = (𝑎𝑗 , 𝛼𝑗)1,𝑛; (𝑎𝑗𝑖, 𝛼𝑗𝑖)𝑛+1,𝑝𝑖
, (𝜌 + 𝜎 + (𝛿 + 𝛾 − 1)𝑘 + 𝑢, 𝜇 + 𝜈) 

𝑄2 = (𝜌 + 𝛾𝑘, 𝜇), (𝜎 + (𝛿 − 1)𝑘 + 𝑢, 𝜈), (𝑏𝑗 , 𝛽𝑗)1,𝑚; (𝑏𝑗𝑖, 𝛽𝑗𝑖)𝑚+1,𝑞𝑖
. 

 

Integral- III 

∫𝑥𝜌−1 (𝑡 − 𝑥)𝜎−1𝑒−𝑥𝑦 𝑀𝑄
𝜏

𝑃 [(𝑔𝑃); (ℎ𝑄); 𝑎𝑥
𝛾(𝑡 − 𝑥)𝛿]

𝑡

0

 

𝐼𝑝𝑖,𝑞𝑖∶𝑟
𝑚,𝑛 [𝑧𝑥𝜇(𝑡 − 𝑥)−𝜈 |

(𝑎𝑗, 𝛼𝑗)1,𝑛
; (𝑎𝑗𝑖 , 𝛼𝑗𝑖)𝑛+1,𝑝𝑖

(𝑏𝑗 , 𝛽𝑗)1,𝑚; (𝑏𝑗𝑖 , 𝛽𝑗𝑖)𝑚+1,𝑞𝑖

] 𝑑𝑥 

= 𝑒−𝑡𝑦𝑡𝜌+𝜎−1  ∑  

∞

𝑢=0

∑𝑡(𝛾+𝛿−1)𝑘+𝑢  
𝑦𝑢−𝑘

(𝑢 − 𝑘)!
 𝑓(𝑘)

𝑛

𝑘=0

𝐼𝑝𝑖+1,𝑞𝑖+2:𝑟
𝑚+1,𝑛+1 [𝑧𝑡𝜇−𝜈 |

𝑃3
𝑄3
] 

(3.4) 

provided that 𝜇 > 0, 𝜈 ≥ 0 such that  𝜇 − 𝜈 ≥ 0 and  

 𝑅𝑒(𝜌) + 𝜇 min
1≤𝑗≤𝑚

[𝑅𝑒(𝑏𝑗 𝛽𝑗⁄ )] > 0  𝑅𝑒(𝜎) − 𝜈 min
1≤𝑗≤𝑛

[𝑅𝑒((𝑎𝑗 − 1) 𝛼𝑗⁄ )] > 0,  it 

being assumed that the conditions (b) to (c) given with integral I are satisfied. Also 

f(k) is given by (3.2). 

 

Integral- IV  

∫𝑥𝜌−1 (𝑡 − 𝑥)𝜎−1𝑒−𝑥𝑦 𝑀𝑄
𝜏

𝑃 [(𝑔𝑃); (ℎ𝑄); 𝑎𝑥
𝛾(𝑡 − 𝑥)𝛿]

𝑡

0

 

𝐼𝑝𝑖,𝑞𝑖∶𝑟
𝑚,𝑛 [𝑧𝑥𝜇(𝑡 − 𝑥)−𝜈 |

(𝑎𝑗, 𝛼𝑗)1,𝑛; (𝑎𝑗𝑖 , 𝛼𝑗𝑖)𝑛+1,𝑝𝑖
(𝑏𝑗 , 𝛽𝑗)1,𝑚; (𝑏𝑗𝑖 , 𝛽𝑗𝑖)𝑚+1,𝑞𝑖

] 𝑑𝑥 

= 𝑒−𝑡𝑦𝑡𝜌+𝜎−1  ∑  

∞

𝑢=0

∑𝑡(𝛾+𝛿−1)𝑘+𝑢  
𝑦𝑢−𝑘

(𝑢 − 𝑘)!
 𝑓(𝑘)

𝑛

𝑘=0

𝐼𝑝𝑖+2,𝑞𝑖+1:𝑟
𝑚+1,𝑛+1 [𝑧𝑡𝜈−𝜇 |

𝑃4
𝑄4
] , (3.5) 

provided that 𝜇 ≥ 0, 𝜈 > 0 such that  𝜈 − 𝜇 ≥ 0;  

 𝑅𝑒(𝜌) − 𝜇  min
1≤𝑗≤𝑛

[𝑅𝑒((𝑎𝑗 − 1) 𝛼𝑗⁄ )] > 0 𝑅𝑒(𝜎) + 𝜈 min
1≤𝑗≤𝑚

[𝑅𝑒(𝑏𝑗 𝛽𝑗⁄ )] > 0.  

Here  

𝑃4 = (1 − 𝜌 − 𝛾𝑘, 𝜇), (𝑎𝑗 , 𝛼𝑗)1,𝑛; (𝑎𝑗𝑖 , 𝛼𝑗𝑖)𝑛+1,𝑝𝑖
, (𝜌 + 𝜎 + (𝛿 + 𝛾 − 1)𝑘 + 𝑢, 𝜈

− 𝜇) 

  𝑄4 = (𝜎 + (𝛿 − 1)𝑘 + 𝑢, 𝜈), (𝑏𝑗 , 𝛽𝑗)1,𝑚; (𝑏𝑗𝑖 , 𝛽𝑗𝑖)𝑚+1,𝑞𝑖
. 

and f(k) is given by (3.2). 
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Integral- V  

∫𝑥𝜌−1 (𝑡 − 𝑥)𝜎−1𝑒−𝑥𝑦 𝑀𝑄
𝜏

𝑃 [(𝑔𝑃); (ℎ𝑄); 𝑎𝑥
𝛾(𝑡 − 𝑥)𝛿]

𝑡

0

 

𝐼𝑝𝑖,𝑞𝑖∶𝑟
𝑚,𝑛 [𝑧𝑥−𝜇(𝑡 − 𝑥)𝜈 |

(𝑎𝑗, 𝛼𝑗)1,𝑛; (𝑎𝑗𝑖 , 𝛼𝑗𝑖)𝑛+1,𝑝𝑖
(𝑏𝑗 , 𝛽𝑗)1,𝑚; (𝑏𝑗𝑖 , 𝛽𝑗𝑖)𝑚+1,𝑞𝑖

] 𝑑𝑥 

= 𝑒−𝑡𝑦𝑡𝜌+𝜎−1  ∑  

∞

𝑢=0

∑𝑡(𝛾+𝛿−1)𝑘+𝑢  
𝑦𝑢−𝑘

(𝑢 − 𝑘)!
 𝑓(𝑘)

𝑛

𝑘=0

𝐼𝑝𝑖+2,𝑞𝑖+1:𝑟
𝑚+1,𝑛+1 [𝑧𝑡𝜈−𝜇 |

𝑃4
𝑄4
], 

(3.6) 

provided that 𝜇 ≥ 0, 𝜈 > 0 such that  𝜈 − 𝜇 ≥ 0;  

 𝑅𝑒(𝜌) + 𝜇  min
1≤𝑗≤𝑛

[𝑅𝑒 (
𝑏𝑗

𝛽𝑗
)] > 0 𝑅𝑒(𝜎) − 𝜈 max

1≤𝑗≤𝑚
[𝑅𝑒((𝑎𝑗 − 1) 𝛼𝑗⁄ )] > 0.  

Here  

𝑃4 = (1 − 𝜌 − (𝛾 − 1)𝑘 − 𝑢, 𝜈), (𝑎𝑗, 𝛼𝑗)1,𝑛; (𝑎𝑗𝑖 , 𝛼𝑗𝑖)𝑛+1,𝑝𝑖
, 

                  𝑄4 = (1 − 𝜎 − 𝛿𝑘, 𝜈), (𝑏𝑗 , 𝛽𝑗)1,𝑚; (𝑏𝑗𝑖 , 𝛽𝑗𝑖)𝑚+1,𝑞𝑖
. 

and f(k) is defined  by (3.2). 

 

Integral- VI  

∫𝑥𝜌−1 (𝑡 − 𝑥)𝜎−1𝑒−𝑥𝑦 𝑀𝑄
𝜏

𝑃 [(𝑔𝑃); (ℎ𝑄); 𝑎𝑥
𝛾(𝑡 − 𝑥)𝛿]

𝑡

0

 

𝐼𝑝𝑖,𝑞𝑖∶𝑟
𝑚,𝑛 [𝑧𝑥−𝜇(𝑡 − 𝑥)𝜈 |

(𝑎𝑗, 𝛼𝑗)1,𝑛; (𝑎𝑗𝑖 , 𝛼𝑗𝑖)𝑛+1,𝑝𝑖
(𝑏𝑗 , 𝛽𝑗)1,𝑚; (𝑏𝑗𝑖 , 𝛽𝑗𝑖)𝑚+1,𝑞𝑖

] 𝑑𝑥 

= 𝑒−𝑡𝑦𝑡𝜌+𝜎−1  ∑  

∞

𝑢=0

∑𝑡(𝛾+𝛿−1)𝑘+𝑢  
𝑦𝑢−𝑘

(𝑢 − 𝑘)!
 𝑓(𝑘)

𝑛

𝑘=0

𝐼𝑝𝑖+2,𝑞𝑖+1:𝑟
𝑚+1,𝑛+1 [𝑧𝑡𝜈−𝜇 |

𝑃4
𝑄4
],  

(3.7) 

provided that 𝜇 ≥ 0, 𝜈 > 0 such that  𝜈 − 𝜇 ≥ 0;  

 𝑅𝑒(𝜌) − 𝜇  min
1≤𝑗≤𝑛

[𝑅𝑒((𝑎𝑗 − 1) 𝛼𝑗⁄ )] > 0 𝑅𝑒(𝜎) + 𝜈 min
1≤𝑗≤𝑚

[𝑅𝑒(𝑏𝑗 𝛽𝑗⁄ )] > 0. Here  

𝑃4 = (𝜌 + 𝛾𝑘, 𝜇), (𝑎𝑗, 𝛼𝑗)1,𝑛; (𝑎𝑗𝑖 , 𝛼𝑗𝑖)𝑛+1,𝑝𝑖
, (𝜌 + 𝜎 + 𝛾𝑘 + 𝛿𝑘, 𝜈 − 𝜇) 

𝑄4 = (𝜌 + 𝛾𝑘, 𝜇), (𝑏𝑗, 𝛽𝑗)1,𝑚; (𝑏𝑗𝑖 , 𝛽𝑗𝑖)𝑚+1,𝑞𝑖
(1 − 𝜎 − (𝛿 + 𝛾 − 1)𝑘 − 𝑢, 𝜈 − 𝜇). 

and f(k) is defined  by (3.2). 

 

Proof of the Integrals:   

 

   In order to prove first integral (3.1), let us consider  L.H.S. of (3.1) 
:  
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 𝐼1 = 𝑒
−𝑡𝑦∫𝑥𝜌−1 (𝑡 − 𝑥)𝜎−1𝑒(𝑡−𝑥)𝑦 𝑀𝑄

𝜏
𝑃  [(𝑔𝑃); (ℎ𝑄); 𝑎𝑥

𝛾(𝑡 − 𝑥)𝛿]

𝑡

0

 

𝐼𝑝𝑖,𝑞𝑖∶𝑟
𝑚,𝑛 [𝑧𝑥𝜇(𝑡 − 𝑥)𝜈 |

(𝑎𝑗 , 𝛼𝑗)1,𝑛; (𝑎𝑗𝑖 , 𝛼𝑗𝑖)𝑛+1,𝑝𝑖
(𝑏𝑗 , 𝛽𝑗)1,𝑚; (𝑏𝑗𝑖, 𝛽𝑗𝑖)𝑚+1,𝑞𝑖

] 𝑑𝑥 

Now we replace 𝑒(𝑡−𝑥)𝑦  by ∑
(𝑡−𝑥)𝑢𝑦𝑢

𝑢!
∞
𝑢=0  and express the M-series and the I-

function with the help of (1.7) and (1.4) respectively, then we get  

 𝐼1 = 𝑒
−𝑡𝑦∫𝑥𝜌−1 (𝑡 − 𝑥)𝜎−1 ∑

(𝑡 − 𝑥)𝑢𝑦𝑢

𝑢!
∑
(𝑎1)𝑘…(𝑎𝑝)𝑘
(𝑏1)𝑘…(𝑏𝑞)𝑘

∞

𝑘=0

∞

𝑢=0

𝑡

0

𝑎𝑘𝑥𝛾𝑘(𝑡 − 𝑥)𝛿𝑘

Γ(𝜏𝑘 + 1)
 



1

2𝜋𝑖
∫ 𝜙(𝜉)𝑧𝜉𝑥𝜇𝜉(𝑡 − 𝑥)𝜈𝜉𝑑𝜉𝑑𝑥

ℒ

 

 = 𝑒−𝑡𝑦∫𝑥𝜌−1 (𝑡 − 𝑥)𝜎−1 ∑∑
(𝑎1)𝑘…(𝑎𝑝)𝑘
(𝑏1)𝑘…(𝑏𝑞)𝑘

∞

𝑘=0

∞

𝑢=0

𝑡

0

𝑎𝑘𝑥𝛾𝑘(𝑡 − 𝑥)𝛿𝑘+𝑢

Γ(𝜏𝑘 + 1)

𝑦𝑢

𝑢!
 



1

2𝜋𝑖
∫ 𝜙(𝜉)𝑧𝜉𝑥𝜇𝜉(𝑡 − 𝑥)𝜈𝜉𝑑𝜉𝑑𝑥

ℒ

 

Now by the use of (2.2), the above result reduces to 

= 𝑒−𝑡𝑦∫𝑥𝜌−1 (𝑡 − 𝑥)𝜎−1 ∑∑
(𝑎1)𝑘…(𝑎𝑝)𝑘
(𝑏1)𝑘…(𝑏𝑞)𝑘

𝑛

𝑘=0

∞

𝑢=0

𝑡

0

𝑎𝑘𝑥𝛾𝑘(𝑡 − 𝑥)𝛿𝑘+𝑢−𝑘

Γ(𝜏𝑘 + 1)

𝑦𝑢−𝑘

(𝑢 − 𝑘)!
 



1

2𝜋𝑖
∫ 𝜙(𝜉)𝑧𝜉𝑥𝜇𝜉(𝑡 − 𝑥)𝜈𝜉𝑑𝜉𝑑𝑥

ℒ

 

Interchanging the order of integration and summation, we get 

 𝐼1 = 𝑒
−𝑡𝑦∑∑𝑓(𝑘)

𝑛

𝑘=0

∞

𝑢=0

𝑦𝑢−𝑘

(𝑢 − 𝑘)!

1

2𝜋𝑖
∫ 𝜙(𝜉)𝑧𝜉

ℒ

 

 {∫𝑥𝜌+𝛾𝑘+𝜇𝜉−1
𝑡

0

(𝑡 − 𝑥)𝜎+(𝜂−1)𝑘+𝑢+𝜈𝜉−1𝑑𝑥}𝑑𝜉, 

where f(k) is given by (3.2). 

on substituting x= ts in the inner x-integral, the above expression reduce to  

 𝐼1 = 𝑒
−𝑡𝑦𝑡𝜌+𝜎−1∑∑𝑓(𝑘)

𝑛

𝑘=0

∞

𝑢=0

𝑦𝑢−𝑘

(𝑢 − 𝑘)!
𝑡(𝛿+𝜂−1)𝑘+𝑢

1

2𝜋𝑖
∫ 𝜙(𝜉)𝑧𝜉𝑡(𝜇+𝜈)𝜉

ℒ
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 {∫ 𝑠𝜌+𝛾𝑘+𝜇𝜉−1
1

0

(1 − 𝑠)𝜎+(𝜂−1)𝑘+𝑢+𝜈𝜉−1𝑑𝑠}𝑑𝜉, 

 = 𝑒−𝑡𝑦𝑡𝜌+𝜎−1∑∑𝑓(𝑘)

𝑛

𝑘=0

∞

𝑢=0

𝑦𝑢−𝑘

(𝑢 − 𝑘)!
𝑡(𝛿+𝜂−1)𝑘+𝑢

1

2𝜋𝑖
∫ 𝜙(𝜉)

ℒ

 

 



Γ(𝜌 + 𝛿𝑘 + 𝜇𝜉)Γ(𝜎 + (𝜂 − 1)𝑘 + 𝑢 + 𝜈𝜉)

Γ(ρ+ σ+ (δ+ η − 1)k + u + (μ+ ν)ξ
𝑧𝜉𝑡(𝜇+𝜈)𝜉  𝑑𝜉 

 

Finally, interpreting the contour integral by virtue of (1.5), we obtain 

 𝐼1 = 𝑒
−𝑦𝑡𝑡𝜌+𝜎−1∑ ∑ 𝑓(𝑘)𝑛

𝑘=0
∞
𝑢=0

𝑦𝑢−𝑘

(𝑢−𝑘)!
𝑡(𝛿+𝜂−1)𝑘+𝑢  

𝐼𝑝𝑖+2,𝑞𝑖+1∶𝑟
𝑚,𝑛+2 [𝑧𝑡𝜇+𝜈 |

𝑃1
𝑄1
] 

where 𝑃1 and 𝑄1 denotes the parameter 

𝑃1 = (1 − 𝜌 − 𝛾𝑘, 𝜇), (1 − 𝜎 − (𝛿 − 1)𝑘 − 𝑢, 𝜈), (𝑎𝑗 , 𝛼𝑗)1,𝑛; (𝑎𝑗𝑖, 𝛼𝑗𝑖)𝑛+1,𝑝𝑖
 

and 

𝑄1 = (𝑏𝑗 , 𝛽𝑗)1,𝑚; (𝑏𝑗𝑖 , 𝛽𝑗𝑖)𝑚+1,𝑞𝑖
, (1 − 𝜌 − 𝜎 − (𝛾 + 𝛿 − 1)𝑘 − 𝑢 − 𝛿𝑘, 𝜇 + 𝜈) 

  
  By using similar mathematical analysis we can prove the remaining 

integrals  

Special Cases 

(i) By putting 𝜏 = 1 and 𝑒−𝑥𝑦 = 1  in the integral (5) the 𝑀-series reduces to 

the well known generalized hypergeometric function 𝐹𝑃 𝑄 and we find the 

integral [16, p. 63 (eq. 4.4.2)] 

(ii) When replacing   𝑟 = 1 the 𝐼-function reduces to Fox’s 𝐻-function and we 

find the integral [20, p. 61 (eq.5.2.1)] in terms of Fox’s 𝐻-function.  

 

5. Conclusion: 

 Our findings are very useful and applicable in mathematical physics and 

engineering sciences. As a result above outcomes of this paper are easily converted 

in terms of other special functions after some suitable parametric replacement, such 

as in Fox’s 𝐻-function, Maitland’s generalized Bessel function and Maitland’s 

generalized hypergeometric function exponential function binomial function and 

Higher transcendental functions etc.  
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Abstract 
In this article, we provide a method for determining if a given polynomial with int

eger coefficients is irreducible over the space of rational numbers. We examine m

ore contemporary tests, such as those of Ram Murty, Chen et al., Filaseta, and oth

ers, in addition to more established ones like the Eisenstein criterion and irreducib

ility over prime finite fields. 
 

Introduction.  

  If a polynomial can be expressed as a product of lower degree polynomials 

with coefficients in a certain field, it is said to be reducible over that field. If not, it 

is considered irreducible. 

  We will focus on the polynomials with integer coefficients and their 

irreducibility over the field of rational numbers in this article (which is denoted by 

Q). The ring of polynomials with integer coefficients is denoted by Z[X]. 

  Determining whether or not a specific polynomial is irreducible is a matter 

that interests us. Hence, a straightforward test or criterion that would provide this 

information is preferred. Regrettably, no such test or irreducibility criterion has yet 

been discovered that will apply to all classes of polynomials; nonetheless, several 

tests have been discovered that provide useful information for some specific classes 

of polynomials. Unless otherwise stated, the irreducibility of f(X)will be over Q 

throughout the article. 

  According to Eisenstein [1], the most widely used irreducibility criterion is 

as follows: 

Let 𝑓(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎0 ∈ 𝑍[𝑥] if ∃ a prime 𝑝 such that𝑝 ∤ 𝑎n𝑝/
𝑎0, 𝑝/𝑎1, … 𝑝/𝑎𝑛−1 and𝑝2 ∤ 𝑎0, then 𝑓(𝑥) is irreducible over 𝑄. 

  Eisenstein polynomials are such a polynomial, f(X). It frequently occurs 

that this condition does not directly apply to a given polynomial f(X), but that it 

might apply to f(X+a) for some constant a. As a result, we experiment with different 

choices of an in an effort to convert f(X) into a polynomial that meets the criterion's 

requirements. 

  It is known that practically all polynomials with integer coefficients are 

irreducible polynomials according to the probabilistic Galois theory. It seems sense 

to search for additional criteria to demonstrate the irreducibility of a particular 

polynomial.  
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  But, there are alternative conditions that are even simpler than Eisenstein's, 

and these always hold true, assuming we are prepared to factor some huge numbers. 

 This article's goal is to explain how to use these criteria to determine 

whether or not a particular polynomial with integer coefficients is irreducible. For 

earlier findings, we cite [2], [3], [4], [5] and [6]. 

 

Preliminary   

  Let 𝑅 be an integnal domain. A polynomial 𝑔(𝑥) ∈ 𝑅[𝑥] of positive degree 

[deg(g(x)) ≥ 1 ] is said to be an irreducible polynomial over 𝑅 if it can not be 

expressed as product of two polynomials of positive degree. 

  A polynomial of positive degree which is not irreducible is called reducible 

over 𝑅. 

Example.   Consider the polynomial f(𝑥) = 3𝑥2 + 3 . Since it can not be 

expressed as product of two positive degree polynomials in 𝑍[𝑥] 
  We notice it is irreducible polynomial over Z . 

Again, 

                    3𝑥2 + 3 = 3(𝑥2 + 1) = Product of two polynimials 

                                                        = 𝑔(𝑥)ℎ(𝑥) (say)  

  We find 3𝑥2 + 3 can be expressed as product of two non-units and thus 

𝑓(𝑥) = 3𝑥2 + 3 is not an irreducible element in 𝑍[𝑥]. 
 

Methodology 

Theorem-1. Every irreducible elements in 𝑅[𝑥] is an irreducible polynomal where 

𝑅  is an integral domain with unity. 

Proof: Let 𝑓(𝑥) ∈ 𝑅[𝑥]  be any irreducible elements. 

Suppose 𝑓(𝑥)  is reducible polynomial 

Then 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥); 𝑔(𝑥), ℎ(𝑥) ∈ 𝑅[𝑥]  , where degree 𝑔(𝑥) > 0 , degree 

ℎ(𝑥) > 0 

⇒ degree 𝑔(𝑥) > 0, 𝑑𝑒𝑔𝑟𝑒𝑒 ℎ(𝑥) > 0 are not constant polynomials: 

∴ 𝑔, ℎ ∉ 𝑅 
⇒ 𝑔, ℎ cannot be units in 𝑅 

⇒ 𝑔, h cannot be units in 𝑅[𝑥] 
 ⇒ 𝑓(𝑥) is not irreducible element. 

This contradiction proves our result. 

Irreducibility Criteria 

1. If a polynomial degree𝑓(𝑥) > 1 and 𝑓(𝑎) = 0 for some 𝑎 ∈ 𝐹. Then 𝑓(𝑥) 
is reducible over 𝐹, where 𝐹 is a field 

2. Reducibility Test for degree 2 and 3 : Let  𝐹 be 𝑎 field if 𝑓(𝑥) ∈ 𝐹[𝑥] and 

deg 𝑓(𝑥) = 2 or 3 then f(𝑥) is irreducible over 𝐹 if and only if 𝑓(𝑥) has a 

zero in  𝐹. 
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Example: 

(a)𝑓(𝑥) = 2𝑥2 + 4 ∈ ℝ[𝑥] Since 𝑓(𝑥) has no zero in ℝ 

   ⇒ 𝑓(𝑥) is irreducible over ℝ 

But, it is reducible over C. 

(b)𝑓(𝑥) = 𝑥2 − 2 ∈ 𝑄[𝑥]  is irreducible over 𝑄, since 𝑓(𝑥) has no zero in Q. But 

it is reducible over R. 

(c)𝑓(𝑥) = 𝑥2 + 1 is irreducible over 𝑍3,  but reducible over ℤ5. 
𝑍3 = {0, 1, 2} and  𝑍5 = {0, 1, 2, 3, 4} 

𝑓(0) = 02 + 1 = 1 

𝑓(0) = 12 + 1 = 2 

 𝑓(2) = 22 + 1 = 5 

𝑓(𝑥) = 𝑥2 + 1 is irreducible over 𝑍3,   

𝑓(3) = 32 + 1 = 10(mod5) = 0 

Hence it is reducible over ℤ5. 
3. Let 𝑓(𝑥) ∈ Z[𝑥] if 𝑓(𝑥) is reducible over 𝑍, then it is reducible over Q. 

4. Mod 𝑝 irreducibility Test: Let 𝑝 be a prime and suppose that 𝑓(𝑥) ∈ ℤ[𝑥] 
with             deg 𝑓 ≥ 1. Let 𝑓𝑝(𝑥) be the polynomial in 𝑍𝑝[𝑥] obtained from 

𝑓(𝑥)  by reducing all the co-efficients of 𝑓(𝑥)  modulo 𝑝 . if 𝑓(𝑥)  is 

irreducible over 𝑍𝑝 and                         deg 𝑓(𝑥) = deg 𝑓𝑝(𝑥), then 𝑓(𝑥) is 

irreducible over Q. 

For example, consider 𝑓(𝑥) = 21𝑥3 − 3𝑥2 + 2𝑥 + 8 

Then 𝑓2(𝑥) = 𝑥
3 + 𝑥2 ∈ 𝑧2[x] 

𝑓2(𝑥) = 𝑥
2(𝑥 + 1) is reducible 

But 𝑓(𝑥) is irreducible over 𝑄. 

this shows that mod 𝑝 irreducibility test may fail for some 𝑝 and work for others. 

(a) 𝑓(𝑥) = 21𝑥3 − 3𝑥2 + 2𝑥 + 9 then over 𝑍2,  
we have 𝑓2(𝑥) = 𝑥

3 + 𝑥2 + 1 

𝑓2(0) = 1 and 𝑓2(1) = 1 

⇒ 𝑓2(𝑥) is irreducible over 𝑍2. 
⇒ 𝑓(𝑥) is irreducible over Q. 

 (b) 𝑓(𝑥) = 6𝑥2 + 8𝑥2 + 6𝑥 − 4  then over 𝑍5 is 

      𝑓5(𝑥) = 𝑥
3 + 3𝑥2 + 𝑥 − 4 

𝑓5(0) = 1,  𝑓5(1) = 1, 𝑓5(2) = 3, 𝑓5(3) = 3, 𝑓5(4) = 2 

⇒ 𝑓5(𝑥) irreducible over 𝑍5 ⇒ 𝑓(𝑥) is irreducible over 𝑄. 
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ABSTRACT: 
  In this present work supplemented modules are extended as quasi weakly 
essential supplemented modules and some properties are studied. Also proved 
that every finite sum of quasi weakly essential supplemented modules is quasi 
weakly essential supplemented.  
Keywords: Essential Submodules, Small Submodules, Weakly essential 
supplemented module. 
Mathematics Subject Classification: 16D10, 16D70, 16D99 

 

1. INTRODUCTION: 
  By using the basic definitions of Alizade R and others [1,2 ]we are providing 
sum results: 
For any R-module M 
• If every essential submodule of M has a weak supplement in M, then M is 

called a weakly essential supplemented module. Hence obviously  every 
weakly supplemented module is quasi weakly essential supplemented  
module. 

• Every (generalized) hollow and every local module are quasi weakly 
essential supplemented. 

•  If V≤M and  if V is a weak supplement of an essential submodule in M, then 
V is called a quasi weak essential supplement submodule in M.  

•  If every essential submodule of M is a weak supplement in M, then M is 
quasi weakly essential supplemented. Therefore it is clear that if every 
essential submodule of M is a weak essential supplement in M, then M is 
quasi weakly essential supplemented. 

•  Let M be a weakly essential supplemented R-module. If every non zero 
submodule of M is essential in M, then M is quasi weakly 
supplemented..Also M is weakly supplemented. 

 

30 

mailto:Jatsushma280@gmail.com
mailto:sai01vivek@gmail.com


INSPIRE        ISSN: 2455-6742 
Vol. 07 & 08; Nov 2021, May 2022 & Nov 2022; No. 01, 02 & 01   30 - 36 
 

• It known that every factor module and every homomorphic image of a 
weakly essential supplemented module are quasi weakly essential 
supplemented.  

• Let M be an R-module, U⊴ M and K≤ M. If K is weakly essential 
supplemented and U+K has a weak g-supplement in M, then U has also a 
quasi weak supplement in M. 

     By exploiting the above fact we have proved that the finite sum of weakly 
essential supplemented modules is quasi weakly essential supplemented.  

• Let M be a weakly essential supplemented module. Then M/RadN have no 
proper essential submodules. 

•  Let M be a weakly essential supplemented R-module. Then every finitely 
M-generated R-module is quasi weakly essential supplemented. 

  Present paper includes section 1 introduction , section 2basic definitions, 
existing propositions,lemmas and our results using them, section 3conclusion. 
   
2. LETRATURE REVIEWED & RESULTS: 
Definition 2.1 Let M be an R-module and U, V  ⊆ M.  V  is called weak essential 
supplement of U if U + V = M and U ∩ V «M. 
Definition 2.2 Let M be an R-module. If every essential submodule of M has a 
weak supplement in M, then M is called quasi weakly essential supplemented 
module. 
Example 2.1 Supplemented, artinian, semisimple, linearly compact, uniserial and 
hollow modules are quasi weakly  essential supplemented modules. 
 

Proposition 2.1 Every factor module of a weakly essential supplemented module 
is quasi weakly essential supplemented. 
Proof:       Let M/K  be a factor module of a weakly essential supplemented 
module M and       L/K ⊆M/K. Since M is weakly essential supplemented there 
exists essential submodule N of M such that L + N = M and L ∩ N « M. Then 
M/K = (L + N)/K = L/K + (N + K)/K and (L/K)∩((N +K)/K)«M/K since L∩K «M. 
 

Proposition 2.2 A small cover of a weakly essential supplemented module is a 
quasi weakly essential supplemented module. 
Proof:  Let M be a small cover of a weakly essential supplemented module 

N.   ThenNM/K for some K«M. Take a submodule L of M and a weak 

essential supplement X/K of (L+K)/K   in M/K. Since K«M, we get 

(X∩L)+K=X∩(L+K)«M and X is a weak supplement of L in M. Thus M 

is quasi  weakly essential supplemented. 

In the following proposition there are some properties of quasi weakly 

essential supplemented modules. 
 

Proposition 2.3 Let M be an R-module. If M is quasi weakly essential 
supplemented, then the following properties hold: 
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(i) M is semi local; 
(ii) M = M1  M2 with M1 semisimple and Rad (M) ⊴ M2; 
(iii) Every supplement in M and every direct summand of M is quasi 
weakly essential supplemented. 
Proof   (i) and (ii) follow from Propositions i.e for a proper sub module N of M, 
the following   are equivalent: 
(i) M/N is semi simple;  
(ii) For every L⊆  M there exists a sub module K ⊆ M such that L+K = M and L∩K⊆ 
N; 
(iii) There exists a decomposition M = M1M2 such that M 1 is semi simple, N⊴ 
M2 and M2/N is semisimple. Since for every L ⊆ M there exists a weak 
supplement K⊆ M such that L+K=M and L∩K⊆ R ad(M). 
(iv) Let N⊆ M   be   a   supplement of M. Then   N+K=M  and 
N ∩ K« N  for  some  K⊆ M. By Proposition 2.1. ,M/K N/N ∩ K is 

weakly essential supplemented and by Proposition 2.2, N is weakly 

essential supplemented. Direct summands are essential supplements and 

so they are quasi weakly essential supplemented. 
 

Lemma 2.1 Let M be an R-module with essential submodules K and M1. Assume 
M1 is quasi weakly essential supplemented and M1 + K has a quasi weak essential 
supplement in M. Then K has a quasi weak essential supplement in M . 
Proof: Let X be a quasi weak essential supplement of M1 + K in M, i.e. 
M = M1 + K + X and (M1 + K) ∩ X « M 
and let Y be a quasi weak essential supplement of (K + X) ∩ M1 in M1, i.e. 

M1 = (K + X) ∩ M1 + Y and ((K + X) ∩ M1) ∩ Y « M1. 
Since Y ⊆ M1, 
Y + K ⊆ M1 + K ⇒ (Y + K) ∩ X ⊆ (M1 + K) ∩ X. 
Thus (Y + K) ∩ X « M since (M1 + K) ∩ X « M. Now 
M = M1 + K + X = ((K + X) ∩ M1) + Y + K + X = Y + K + X and 
Y ∩ (K + X) = Y ∩ M1 ∩ (K + X) « M1⊆M. 
Hence Y is a quasi weak essential supplement of K + X in M. Then we 

obtain 

 (X + Y) ∩ K ⊆(X ∩ (Y + K)) + (Y ∩ (K + X)) « M ⇒ (X + Y) ∩ K « M. 
Therefore X+Y is a quasi weak essential supplement for K in M. 

 

Proposition 2.3 Let M = M1 + M2, where M1  and M2  are weakly essential 
supplemented, then M is quasi weakly essential supplemented. 
Proof: Let U be a essential submodule of M. Then M = U + M1 + M2. 

Since 0 (zero) submodule is a weak essential supplement of U+M1+M2 and 

M1 is weakly essential supplemented, U + M2 has a weak essential 

supplement by Lemma 2.1. Hence U has a weak essential supplement since 

M2 is quasi weakly essesntial supplemented again byLemma2.1. 
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Corollary 2.1 Every finite sum of weakly essential supplemented modules is 
weakly essential supplemented. 
Proposition 2.4 Let M be an R-module. If M is quasi weakly essential 
supplemented,  then every  finitely M-generated module is quasi weakly essential 
supplemented. 
Proof: Let N be a finitely M-generated module. Then there exists an 

epimorphism
F

f
→N⟶ 0 such that F is finite. Since M is quasi weakly 

essential supplemented, a finite sum of M is also quasi weakly essential 

supplemented. By first  isomorphism theorem 
F

M /KerfN. Since every 

factor module of a weakly essential  supplemented module   is quasi  

weakly essential supplemented 
F

M/Kerf is weakly essential 

supplemented. Hence N is quasi  weakly essential supplemented. 
 

Theorem 2.1   Let 0  L MN 0 be a short exact sequence for R-modules 
L, M, N. If L and N are weakly essential supplemented and L has a weak essential 
supplement in M, then  M is quasi weakly essential supplemented. 
If L is co-closed, then the converse holds; that is if M is weakly essential 
supplemented, then L and N are quasi weakly essential supplemented. 
Proof: Without loss of generality we will assume L ⊆ M. Let S be a weak 

essential supplement of L in M, i.e. L + S = M and L ∩ S « M. Then we 

have, 

M/L ∩ S   L/L ∩ S  S/L ∩ S. 
L/L∩S is weakly essential supplemented as a factor module of L which 

is weakly essential  supplemented. On the otherhand 

S/L ∩ S M/L N 

is weakly essential supplemented. Then M/L ∩ S is weakly essential 

supplemented module as a sum of weakly supplemented modules. 

Therefore M is quasi  weakly essential supplemented by Proposition2.2. 

Conversely, if L is co-closed,  for  L∩S⊆ L, L∩S«M implies L∩S«L i.e. 

L is a supplement of S in M. Then by Proposition 2.3 (iv), L is quasi weakly 

essential supplemented and by Proposition 2.1, N is quasi weakly essential 

supplemented.     

Proposition2.5 Let  M  be  an  R-module.   M  is  quasi weakly essential 
supplemented  if  and  only if 

Li

n

i

M 








1

/  where  each Li    is a hollow submodule of M. 
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Proof: 
() part is clearly holds and   and to prove let us suppose n = 1 and M/L is 

weakly essential supplemented. Consider the following exact sequence:  0 → L → 
M → M/L → 0. 
Case1: If L« M, then M is quasi weakly essential supplemented since it is 

small cover of M/L 

Case 2: If L ≮≮ M, then M = L + T for a proper submodule T of M. Since 

L is hollow L∩T«L⊆M. Hence T is a weak essential supplement of L in M. 

Since M/L and L are weakly essential supplemented, by Theorem 2.1 M is 

quasi weakly    essential supplemented. 

  Now suppose it holds when i<  n. Let Li

n

i

M 








1

/  be weakly 

essential supplemented.   We get the following exact sequence: 

                        0 










Li

n

i 1

/ 











Li

n

i

1

1

  M/ 











Li

n

i

1

1

  M/ 










Li

n

i 1

 0 

Since 










Li

n

i 1

/ 











Li

n

i

1

1

 Ln ,  is a hollow submodule of M/ 











Li

n

i

1

1

 and  M/ 












Li

n

i 1

 is essential weakly supplemented,  M/ 











Li

n

i

1

1

is weakly essential 

supplemented. Therefore, M is quasi weakly essential supplemented by 
induction. 
 

Corollary 2.2 Let  M  be an R-module. M  is  quasi weakly essential supplemented  

if  and  only if M/ 










Li

n

i 1

 is quasi weakly essential  supplemented where 

each Li is a local submodule of M. 
Proof: Since local modules are hollow, the proof is obliviously by 
Proposition2.5. 
 

Corollary 2.3 Let M be an R-module. If  Soc(M) is finitely generated, then M/ 
Soc(M) is quasi weakly essential supplemented if and only if M is quasi weakly 
essential supplemented. 
Proof: Since simple modules are local, the proof is automatically by 

Corollary 2.2.  
 

Corollary 2.4 Let M be an R-module. M is quasi weakly essential supplemented 
iff M/S is quasi weakly essential supplemented for a finitely generated 
supplemented essential submodule S of M. 
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Proof: Since finitely generated supplemented modules are the irredundant sum 

of local submodules, the proof is clear by Corollary 2.2. 
 

Lemma 2.2 Let M be a finitely generated module with zero radical and let N be a 
non-finitely generated essential submodule of M. Then N does not have any quasi 
weak essential supplement in M. 
Proof:  Suppose that L is a weak essential supplement of N in M, 
  i.e.  M  = N + L and     N ∩ L « M. Now N ∩ L ⊆ Rad(M) = 0. Hence M = N   L 
and N is finitely generated, a 
contradiction.
  

Definition2.3 An R-module is called decomposable if it is a direct sum of cyclic 
modules and finitely generated torsion-free modules of rank one. If R is a 
principal ideal domain, then a decomposable module is exactly a direct sum of 
cyclic modules. 
Definition 2.4 Let M be an R-module. A submodule N is called pure if rN  = N ∩ 
rM for every r ∈ R. 
 

Theorem2.2 Let R be a Dedekind domain,M  be an R-module and S be a pure 
submodule such that M/S is decomposable. Then S is a direct summand of M. 
  As a result of this theorem, the following corollary can be given. 
 

Corollary 2.5   Let R be a Dedekind domain, L, M, N be R-modules and  
   0 → L → M → N → 0 
Be an exact sequence with L pure in M and N decomposable .L and N are quasi 
weakly essential supplemented if and only if M is quasi weakly essential 
supplemented. 
Proof: (⇒ ) By Theorem 2.2, the sequence is splitting so M is quasi weakly 

essential supplemented since L and N are quasi weakly essential 

supplemented. 

( ) Since direct summands of quasi weakly essential supplemented modules are 

quasi weakly essential supplemented, L and N are quasi weakly essential 

supplemented.

  

3. CONCLUSION: Here we have defined more definitions and example and 

results related to supplemented module as weakly essential supplemented module. 
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ABSTRACT 

  In this study, a novel class of non-Newtonian expansive mappings on non-

Newtonian metric spaces is introduced, and various fixed-point theorems are 

demonstrated for two of these mappings on non-Newtonian metric spaces. Our 

findings expand upon and generalize a number of earlier findings in the literature. 
 

KEYWORDS: non-Newtonian metric space; non-Newtonian expansive mapping; 

fixed point. 
 

1. INTRODUCTION  

  Grossman and Katz were the first to introduce the concept of non-

Newtonian calculus [1]. Later, Bashirov et al. [2], Ozyapici et al. [3], Cakmak and 

Basar [4], and others [5-17] study the non-Newtonian calculus. Non-Newtonian 

metric has been examined by Cakmak and Basar [4]. They are supported by [7] in 

a number of ways. The contractive mapping was defined in non-Newtonian metric 

space by Binbasoglu et al. [18]. A very fascinating area of inquiry in fixed point 

theory is the study of expansive maps. Wang et al. [19] defended several fixed-

point findings in entire metric spaces and deputised the idea of extending maps.For 

two expansive mappings, Daffer and Kaneko [20] attested to some common fixed-

point findings in whole metric spaces. We direct the reader to [21-26] for additional 

information. 

  This article presents several fixed-point results in non-Newtonian metric 

space and introduces the idea of non-Newtonian expansive mappings. Additionally, 

some earlier results are generalized by these results. 
 

2. PRELIMINARIES 

A generator is an injective function that has ℝ, the set of all real numbers, as its 

domain and a subset of ℝ as its range. Every generator produces exactly one form 

of arithmetic, and vice versa, every generator produces a particular type of 

arithmetic. As a generator, we choose the function 𝑒𝑥𝑝 from ℝ to the set ℝ+ of 

positive reals, that is to say, 

37 



INSPIRE        ISSN: 2455-6742 
Vol. 07 & 08; Nov 2021, May 2022 & Nov 2022; No. 01, 02 & 01   37 - 44 

 

𝛽:ℝ ⟶ ℝ+,  
𝑟 ⟼ 𝛽(𝑟) = 𝑒𝑟 = 𝑠 

and                                    𝛽−1: ℝ+⟶ℝ, 
𝑠 ⟼ 𝛽−1(𝑠) = ln 𝑠 = 𝑟 

If 𝐼(𝑟) = 𝑟for all 𝑟 ∈ ℝ, then 𝐼 is called identity function and we know that inverse 

of the identity function is itself. If 𝛽 = 𝐼, then𝛽 generates the classical arithmetic 

and if𝛽 = 𝑒𝑥𝑝 , then 𝛽 generates geometrical arithmetic. All concepts of 𝛽 -

arithmetic have similar properties in classical arithmetic.𝛽-zero,𝛽-one and all 𝛽-

integers are formed as 

. . . . . . , 𝛽(−2), 𝛽(−1), 𝛽(0), 𝛽(1), 𝛽(2). . . . . . .. 
The 𝛽-positive numbers are the numbers 𝑞 ∈ 𝐴 such that 0̇ <̇ 𝑞and the 𝛽-negative 

numbers are those for which 𝑞 <̇ 0̇. The 𝛽-zero, 0̇, and the 𝛽-one, 1̇, turn out to be 

𝛽(0) and 𝛽(1). The 𝛽 -integers consist of 0̇ and all the numbers that result by 

successive 𝛽-addition of 1̇ and 0̇ and by successive 𝛽-subtraction of 1̇ and 0̇. 

We denote by ℝ(𝑁) the range of generator 𝛽 and write ℝ(𝑁) = {𝛽(𝑟) ∶ 𝑟 ∈ ℝ }. 
ℝ(𝑁) is called Non-Newtonian real line.Non-Newtonian arithmetic operations on 

ℝ(𝑁) are represented as follows: 

𝛽-addition                   𝑝 ∔ 𝑞 = 𝛽(𝛽−1(𝑝) + 𝛽−1(𝑞)), 

𝛽-subtraction              𝑝 ∸ 𝑞 = 𝛽(𝛽−1(𝑝) − 𝛽−1(𝑞)), 

𝛽-multiplication         𝑝 ×̇ 𝑞 = 𝛽(𝛽−1(𝑝) × 𝛽−1(𝑞)), 

𝛽-division                   𝑝/̇𝑞 = 𝛽(𝛽−1(𝑝) 𝛽−1(𝑞)⁄ ), 

𝛽-order                       𝑝 <̇ 𝑞(𝑝 ≤̇ 𝑞) ⟺ 𝛽−1(𝑝) < 𝛽−1(𝑞)(𝛽−1(𝑝) ≤ 𝛽−1(𝑞)), 

The 𝛽-square of a number 𝑝 ∈ 𝐴 ⊂ ℝ(𝑁) is denoted by 𝑝 ×̇ 𝑝 = 𝑝2𝑁. For each 𝛽-

nonnegative number 𝑣, the symbol √𝑝
𝑁

 will be used to denote 𝑣 = 𝛽(√𝛽−1(𝑝)) 

which is the unique 𝛽-square is equal to 𝑝, which means that 𝑣2𝑁 = 𝑝. Throughout 

this paper, 𝑝𝑝𝑁denotes the 𝑝th non-Newtonian exponent. Thus we have 

𝑝2𝑁 = 𝑝 ×̇ 𝑝 = 𝛽(𝛽−1(𝑝) × 𝛽−1(𝑝)) = 𝛽([𝛽−1(𝑝)]2), 

𝑝3𝑁 = 𝑝2𝑁 ×̇ 𝑝 = 𝛽(𝛽−1(𝑝2𝑁) × 𝛽−1(𝑝)) 

= 𝛽 (𝛽−1 (𝛽(𝛽−1(𝑝) × 𝛽−1(𝑝))) × 𝛽−1(𝑝)) = 𝛽([𝛽−1(𝑝)]3), 

…. 
𝑝𝑝𝑁 = 𝑝𝑝−1𝑁 ×̇ 𝑝 = 𝛽([𝛽−1(𝑝)]𝑝) 

:
:
 

The 𝛽-absolute value of a number 𝑝 ∈ 𝐴 ⊂ ℝ(𝑁) is defined as 𝛽(|𝛽−1(𝑝)|) and is 

denoted by |𝑝|𝑁. For each number 𝑝 ∈ 𝐴 ⊂ ℝ(𝑁),√𝑝2𝑁
𝑁
= |𝑝|𝑁 = 𝛽(|𝛽

−1(𝑝)|). 
In this case, 

|𝑝|𝑁 = {

𝑝, if𝑝 >̇ 0̇

0,̇ if𝑝 = 0̇

0̇−̇𝑝,  if𝑝 <̇ 0̇
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Also ℝ+(𝑁)  denotes non-Newtonian positive real numbers and ℝ−(𝑁) denotes 

non-Newtonian negative real numbers. 𝛽-intervals are represented by 

Closed 𝛽-interval        [̇𝑝, 𝑞]̇ = [𝑝, 𝑞]𝑁 = {𝑠 ∈ ℝ(𝑁) ∶   𝑝 ≤̇ 𝑠 ≤̇ 𝑞} 

= {𝑠 ∈ ℝ(𝑁) ∶  𝛽−1(𝑝) ≤ 𝛽−1(𝑠) ≤ 𝛽−1(𝑞)} 

Open 𝛽-interval        (̇𝑝, 𝑞)̇ = (𝑝, 𝑞)𝑁 = {𝑠 ∈ ℝ(𝑁) ∶   𝑝 <̇ 𝑠 <̇ 𝑞} 

= {𝑠 ∈ ℝ(𝑁) ∶  𝛽−1(𝑝) < 𝛽−1(𝑠) < 𝛽−1(𝑞)} 

Likewise, semi-closed and semi-open 𝛽-intervals can be represented.  For the set 

ℝ(𝑁) of non-Newtonian real numbers, the binary operations (∔)addition and (×̇) 
multiplication are defined by 

∔   ∶   ℝ × ℝ⟶ ℝ 

(𝑝, 𝑞) ⟼ 𝑝 ∔ 𝑞 = 𝛽(𝛽−1(𝑝) + 𝛽−1(𝑞)) 

×̇   ∶   ℝ × ℝ⟶ ℝ 

(𝑝, 𝑞) ⟼ 𝑝 ×̇ 𝑞 = 𝛽(𝛽−1(𝑝) × 𝛽−1(𝑞)). 

The fundamental properties provided in the classical calculus is provided in non-

Newtonian calculus, too. 

Lemma 2.1 (see [4]). (ℝ(𝑁),∔,×̇) is a topologically complete field. 

Lemma 2.2 (see [4])|𝑝 ×̇ 𝑞|𝑁 = |𝑝|𝑁 ×̇ |𝑞|𝑁∀ 𝑝, 𝑞 ∈ ℝ(𝑁). 
Lemma 2.3 (see [4]) |𝑝+̇𝑞|𝑁 ≤̇ |𝑝|𝑁+̇|𝑞|𝑁, ∀ 𝑝, 𝑞 ∈ ℝ(𝑁) 
The non-Newtonian metric spaces provide an alternative to the metricspaces 

introduced in [4]. 
 

Definition 2.4 (see [4]). Let 𝑋 be a non-empty set and 𝑑𝑁: 𝑋 × 𝑋 ⟶ ℝ+(𝑁)be a 

function such that for all 𝑝, 𝑞, 𝑘 ∈ 𝑋; 

(NNM1). 𝑑𝑁(𝑝, 𝑞) = 0̇ ⟺ 𝑝 = 𝑞 

(NNM2). 𝑑𝑁(𝑝, 𝑞) = 𝑑𝑁(𝑞, 𝑘) 

(NNM3). 𝑑𝑁(𝑝, 𝑞) ≤̇ 𝑑𝑁(𝑝, 𝑘)+̇𝑑𝑁(𝑘, 𝑞). 

Then, the map 𝑑𝑁  is called non-Newtonian metric and the pair (𝑋, 𝑑𝑁)is called 

non-Newtonian metric space. 
 

Definition 2.5 (see [4]). Let 𝑋be a vector space on ℝ(𝑁). If a function ‖ . ‖𝑁 ∶
 𝑋 ⟶ ℝ+(𝑁) satisfies the following axioms for all 𝑝, 𝑞 ∈ 𝑋 and 𝜆 ∈ ℝ(𝑁): 

(NNN1). ‖𝑝‖𝑁 = 0̇ ⟺ 𝑝 = 0̇ 

(NNN2). ‖𝜆 ×̇ 𝑝‖𝑁 = |𝜆|𝑁 ×̇ ‖𝑝‖𝑁 

(NNN3). ‖𝑝+̇𝑞‖𝑁 ≤̇ ‖𝑝‖𝑁+̇‖𝑞‖𝑁. 

then it is called a non-Newtonian norm on 𝑋and the pair (𝑋, ‖ . ‖𝑁) is called a non-

Newtonian normed space. 
 

Remark 2.6 (see [4]). Here it is easily seen that every non-Newtonian norm 

‖ . ‖𝑁on 𝑋produces a non-Newtonian metric 𝑑𝑁on 𝑋given by 

𝑑𝑁(𝑝, 𝑞) = ‖𝑝−̇𝑞‖𝑁 , ∀ 𝑝, 𝑞 ∈ 𝑋 
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Definition 2.7 (see [4]). (non-Newtonian convergent sequence) A sequence {𝑞𝑛} 
in a non-Newtonian metric space (𝑋, 𝑑𝑁) is said to be non-Newtonian convergent 

if for every given  𝜖 >̇ 0̇ , there exists an 𝑛0 = 𝑛0(𝜖) ∈ ℕ  and 𝑞 ∈ 𝑋  such that 

𝑑𝑁(𝑞𝑛, 𝑞) <̇ 𝜖 for all 𝑛 > 𝑛0 and is denoted by N lim
𝑛⟶+∞

𝑞𝑛 = 𝑞or 𝑞𝑛
      𝑁     
→    𝑞 as 𝑛

⟶∞. 

Definition 2.8 (see [4]). (non-Newtonian Cauchy sequence) A sequence {𝑞𝑛} in a 

non-Newtonian metric space (𝑋, 𝑑𝑁) is said to be non-Newtonian Cauchy if for 

every given 𝜖 >̇ 0̇, there exists an 𝑛0 = 𝑛0(𝜖) ∈ ℕ such that 𝑑𝑁(𝑞𝑛, 𝑞𝑚) <̇ 𝜖 for 

all 𝑚, 𝑛 > 𝑛0. 

Definition 2.9 (see [4]). (non-Newtonian complete metric space) The space 𝑋 is 

said to be non-Newtonian complete if every non-Newtonian Cauchy sequence in 𝑋 

converges. 

Definition 2.10 (see [4]). (non-Newtonian bounded) Let (𝑋, 𝑑𝑁)  be a non-

Newtonian metric space. The space 𝑋 is said to benon-Newtonian bounded if there 

is a non-Newtonian constant 𝜅 >̇ 0̇ such that 𝑑𝑁(𝑝, 𝑞) ≤̇ 𝜅 for all 𝑝, 𝑞 ∈ 𝑋. The 

space 𝑋  is said to be non-Newtonian unbounded if it is not non-Newtonian 

bounded. 

Proposition 2.11 (see [4]). Suppose that the non-Newtonian metric 𝑑𝑁 onℝ(𝑁)is 

such that 𝑑𝑁(𝑝, 𝑞) = |𝑝−̇𝑞|𝑁  for all 𝑝, 𝑞 ∈ ℝ(𝑁) , then (ℝ(𝑁), 𝑑𝑁) is a non-

Newtonian metric space. 

Lemma 2.12 (see [18]). Let (𝑋, 𝑑𝑁) be a non-Newtonian metric space. Then, 

(1). A non-Newtonian convergent sequence in 𝑋  is non-Newtonian bounded 

and its non-Newtonian limit is unique. 

(2). A non-Newtonian convergent sequence in 𝑋 is a non-Newtonian Cauchy 

sequence in 𝑋. 

From the definition of non-Newtonian Cauchy sequence and Lemma 2.12, we can 

give the following corollary: 

Corollary 2.13 (see [18]) A non-Newtonian Cauchy sequence is non-Newtonian 

bounded. 

Lemma 2.14 (see [18]) Suppose (𝑋, 𝑑𝑁) is a non-Newtonian metric space and 

𝑝, 𝑞, 𝑘 ∈ 𝑋. Then 

|𝑑𝑁(𝑝. 𝑞)−̇𝑑𝑁(𝑞, 𝑘)|𝑁 ≤̇ 𝑑𝑁(𝑝, 𝑘) 
Definition 2.15 Let 𝑋be a set and 𝛶a map from 𝑋 to 𝑋 . A fixed point of 𝛶 is 

asolution of the functional equation𝛶(𝑞) = 𝑞, 𝑞 ∈ 𝑋 . A point 𝑞 ∈ 𝑋  is called 

common fixed point of two self-mappings 𝛶 and 𝑔 on 𝑋 if 𝛶(𝑞) = 𝑔(𝑞) = 𝑞. 

Definition 2.16 (see [18]) Suppose(𝑋, 𝑑𝑁) is a non-Newtonian complete metric 

space. A mapping 𝛶: 𝑋 → 𝑋is called non-Newtonian Lipschitzian if there exists a 

non-Newtonian number 𝛿 ∈ ℝ(𝑁) such that 

𝑑𝑁(𝛶(𝑝), 𝛶(𝑞)) ≤̇ 𝛿 ×̇ 𝑑𝑁(𝑝, 𝑞), ∀ 𝑝, 𝑞 ∈ 𝑋. 

The mapping 𝛶is called non-Newtonian contractive if 𝛿 <̇ 1̇. 
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Binbasıoglu et al [18] established following result in non-Newtonian metric space. 

Theorem 2.17 Let 𝛶  be a non-Newtonian contraction mapping on a non-

Newtonian complete metric space 𝑋. Then 𝛶 has a unique fixed point. 

Proposition 2.18(see[27])The non-Newtonian distance is commutative. 

Proposition 2.19(see[27])Let(𝑋, 𝑑𝑁) be a non-Newtonian metric space and let 

𝑝, 𝑞, 𝑘, 𝑙 ∈ 𝑋. Then 

|𝑑𝑁(𝑝, 𝑞)−̇𝑑𝑁(𝑘, 𝑙)|𝑁 ≤̇ 𝑑𝑁(𝑝, 𝑘)+̇𝑑𝑁(𝑞, 𝑙) 
Proposition 2.20(see[27])Let(𝑋, ‖ . ‖𝑁) be a non-Newtonian normed space. Then 

|‖𝑝‖𝑁−̇‖𝑞‖𝑁|𝑁 ≤̇ ‖𝑝−̇𝑞‖𝑁 , ∀𝑝, 𝑞 ∈ 𝑋 

Definition 2.21(see[27])Suppose (𝑋, 𝑑𝑁)  is a non-Newtonian complete metric 

space. A mapping 𝛶: 𝑋 → 𝑋is called non-Newtonianexpansive if there exists a non-

Newtoniannumber 𝛿 >̇ 1̇ such that 

𝑑𝑁(𝛶𝜂, 𝛶𝜉) ≥̇ 𝛿 ×̇ 𝑑𝑁(𝜂, 𝜉), ∀ 𝜂, 𝜉 ∈ 𝑋.                                 

Lemma 2.22(see[27]) Let {𝑞𝑛} be a sequence in a non-Newtonian metric space 

such that 𝑑𝑁(𝑞𝑛, 𝑞𝑛+1) ≤ 𝛿 ×̇ 𝑑𝑁(𝑞𝑛−1, 𝑞𝑛), where 𝛿 <̇ 1̇ and 𝑛 ∈ ℕ.Then {𝑞𝑛} is 

a non-Newtonian Cauchy sequence in 𝑋. 
 

3. MAIN RESULTS: 

  Now, we give some fixed-point results for non-Newtonian expansive 

mappings in a non-Newtonian complete metric space. Our first main result as 

follows. 

Theorem 3.1 Let (𝑋, 𝑑𝑁) be a non-Newtonian complete metric space and 𝛶  a 

continuous mapping satisfying the following condition:  

𝑑𝑁(Υ𝜂, 𝛶𝜉) ≥̇ μ ×̇ (𝑑𝑁(𝜂, 𝛶𝜂) ×̇ [1+̇𝑑𝑁(𝜉, 𝛶𝜉)])/̇(1+̇𝑑𝑁(𝜂, 𝜉))+̇λ ×̇ 𝑑𝑁(𝜂, 𝜉) (2.

1) 

for all 𝜂, 𝜉 ∈ 𝑋, 𝜂 ≠ 𝜉, where 𝜇, Λ ≥̇ 0 are constants and𝛥+̇𝛬 >̇ 1, 𝛬 >̇ 1. Then, 𝛶 

has a fixed point in 𝑋. 

Proof Choose𝜂0 ∈ 𝑋  be arbitrary, to define the iterative sequence {𝜂𝑛}𝑛∈ℕ  as 

follows and 𝛶𝜂𝑛 = 𝜂𝑛−1 for 𝑛 = 1,2,3, …. Then, using (2.1), we obtain  

𝑑𝑁(𝛶𝜂𝑛+1, 𝛶𝜂𝑛+2) ≥̇ 𝛥 ×̇ (𝑑𝑁(𝜂𝑛+1, 𝛶𝜂𝑛+1) ×̇ [1+̇𝑑𝑁(𝜂𝑛+2, 𝛶𝜂𝑛+2)])/̇(1+̇𝑑𝑁(𝜂𝑛+1, 𝜂𝑛+2)) 

+̇𝛬 ×̇ 𝑑𝑁(𝜂𝑛+1, 𝜂𝑛+2) 
⟹   𝑑𝑁(𝜂𝑛, 𝜂𝑛+1) ≥̇ 𝛥 ×̇ (𝑑𝑁(𝜂𝑛+1, 𝜂𝑛) ×̇ [1+̇𝑑𝑁(𝜂𝑛+2, 𝜂𝑛+1)])/̇(1+̇𝑑𝑁(𝜂𝑛+1, 𝜂𝑛+2)) 

+̇𝛬 ×̇ 𝑑𝑁(𝜂𝑛+1, 𝜂𝑛+2) 
⟹  𝑑𝑁(𝜂𝑛, 𝜂𝑛+1) ≥̇ 𝛥 ×̇ 𝑑(𝜂𝑛, 𝜂𝑛+1)+̇𝛬 ×̇ 𝑑𝑁(𝜂𝑛+1, 𝜂𝑛+2) 
⟹ 𝑑𝑁(𝜂𝑛, 𝜂𝑛+1) ≥̇ 𝛥 ×̇ 𝑑𝑁(𝜂𝑛+1, 𝜂𝑛)+̇𝛬 ×̇ 𝑑𝑁(𝜂𝑛+1, 𝜂𝑛+2) 

⟹   (1−̇𝛥) ×̇ 𝑑𝑁(𝜂𝑛+1, 𝜂𝑛) ≥̇ 𝛬 ×̇ 𝑑𝑁(𝜂𝑛+1, 𝜂𝑛+2). 
The last inequality gives 

          𝑑𝑁(𝜂𝑛+1, 𝜂𝑛+2) ≤̇ (1−̇𝛥)/̇𝛬 ×̇ 𝑑𝑁(𝜂𝑛, 𝜂𝑛+1) = 𝛿 ×̇ 𝑑𝑁(𝜂𝑛, 𝜂𝑛+1)      (3.2) 

where 𝛿 = (1−̇𝛥)/̇𝛬, then we get 𝛿 <̇ 1̇, since𝛥+̇𝛬 >̇ 1. Repeating this process in 

condition (3.2), we find 

   𝑑𝑁(𝜂𝑛+1, 𝜂𝑛+2) ≤ 𝛿
𝑛+1𝑁 ×̇ 𝑑𝑁(𝜂0, 𝜂1)   (3.3) 
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and by Lemma 2.22, {𝜂𝑛} is an NN-Cauchy sequence. Since (𝑋, 𝑑𝑁)  is non-

Newtonian complete,there exists a point 𝑞in 𝑋such that 𝜂𝑛
      𝑁     
→    𝜂. By continuity 

of 𝛶we have, 

𝛶𝜂∗ = 𝛶 (lim𝑁
𝑛→∞

𝜂𝑛) 

= lim𝑁
𝑛→∞

𝛶𝜂𝑛 

             = lim𝑁
𝑛→∞

𝜂𝑛−1 = 𝜂
∗(3.4) 

that is, 𝛶𝜂∗ = 𝜂∗; thus, 𝛶 has a fixed point in 𝑋. 

For uniqueness, let𝜉∗be another fixed point of 𝛶 in 𝑋, then 𝛶𝜉∗ = 𝜉∗and 𝛶𝜂∗ = 𝜂∗. 
Now,  

𝑑𝑁(𝛶𝜂
∗, 𝛶𝜉∗) 

≥ 𝛥 ×̇ (𝑑𝑁(𝜂
∗, 𝛶𝜂∗) ×̇ [1+̇̇𝑑𝑁(𝜉

∗, 𝛶𝜉∗)])/̇[1+̇𝑑𝑁(𝜂
∗, 𝜉∗)]+̇𝛬 ×̇ 𝑑𝑁(𝜂

∗, 𝜉∗) 
This implies that 

𝑑𝑁(𝜂
∗, 𝜉∗) ≥̇ 𝛬 ×̇ 𝑑𝑁(𝜂

∗, 𝜉∗) 
That is 

𝑑𝑁(𝜂
∗, 𝜉∗) ≥̇ 𝛬 ×̇ 𝑑(𝜂∗, 𝜉∗) 

⟹ 𝑑𝑁(𝜂
∗, 𝜉∗) ≤̇ 1/̇𝛬 ×̇ 𝑑𝑁(𝜂

∗, 𝜉∗)                                                     (3.6) 

This is true only when𝑑𝑁(𝜂
∗, 𝜉∗) = 1 and so𝜂∗ = 𝜉∗. Hence 𝛶 has a unique fixed 

point in 𝑋.  

Next we prove Theorem 3.1 for surjective mapping. 

Theorem 3.2 Let (𝑋, 𝑑𝑁) be a non-Newtonian complete metric space and 𝛶  a 

surjective mapping satisfying the condition (3.1) for all 𝜂, 𝜉 ∈ 𝑋, 𝜂 ≠
𝜉, 𝛥+̇𝛬 >̇ 1, 𝛬 >̇ 1.Then,𝛶 has a fixed point in 𝑋. 
Proof Choose 𝜂0 ∈ 𝑋 to be arbitrary, and define the iterative sequence {𝜂𝑛}𝑛∈ℕ as 

follows: 𝛶𝜂𝑛 = 𝜂𝑛−1  for 𝑛 = 1,2,3, ….  Then, using (3.1), we obtain, sequence 

{𝜂𝑛}𝑛∈ℕ is a Cauchy sequence in 𝑋. But 𝑋 is a complete; hence {𝜂𝑛}𝑛∈ℕ is non-

Newtonian converges and ∃ an element𝜂∗ ∈ 𝑋. Such that 𝜂𝑛
      𝑁     
→    𝜂∗as 𝑛 → ∞. 

Since 𝛶  is a Surjective map, so there exists a point 𝜉 in  𝑋 , such that𝜂 = 𝛶𝜉. 
Consider  

𝑑𝑁(𝜂𝑛, 𝜂) = 𝑑𝑁(𝛶𝜂𝑛+1, 𝛶𝜉) 

≥̇ 𝛥 ×̇ 𝑑𝑁(𝜂𝑛+1, 𝛶𝜂𝑛+1) ×̇ [1+̇𝑑𝑁(𝜉, 𝛶𝜉)]/̇(1+̇𝑑𝑁(𝜂𝑛+1, 𝜉)) 
                                                         +̇𝛬 ×̇ 𝑑𝑁(𝜂𝑛+1, 𝜉)                (3.5) 

Taking 𝑛 → ∞, we get  

𝑑𝑁(𝜂, 𝜂) ≥̇ 𝛥 ×̇ 𝑑𝑁(𝜂, 𝜂) ×̇ [1+̇𝑑𝑁(𝜉, 𝜂)]/̇(1+̇𝑑𝑁(𝜂, 𝜉))+̇𝛬 ×̇ 𝑑𝑁(𝜂, 𝜉) 

 ⟹     1 ≥̇ 𝛬 ×̇ 𝑑𝑁(𝜂, 𝜉) 
⟹    𝛬 ×̇ 𝑑𝑁(𝜂, 𝜉) ≤̇ 1 

        ⟹    𝑑𝑁(𝜂, 𝜉) = 1 as 𝛬 >̇ 1. 
Hence𝜂 = 𝜉 and so 𝛶𝜂 = 𝜂, that is, 𝜂is a fixed point of 𝛶. 
Now, we prove uniqueness. Let 𝜉∗be another fixed point of 𝑇 in 𝑋, then 𝛶𝜉∗ =
𝜉∗and 𝛶𝜂∗ = 𝜂∗. Now,  
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𝑑𝑁(𝛶𝜂
∗, 𝛶𝜉∗) 

≥ 𝛥 ×̇ (𝑑𝑁(𝜂
∗, 𝛶𝜂∗) ×̇ [1+̇̇𝑑𝑁(𝜉

∗, 𝛶𝜉∗)])/̇[1+̇𝑑𝑁(𝜂
∗, 𝜉∗)]+̇𝛬 ×̇ 𝑑𝑁(𝜂

∗, 𝜉∗) 
This implies that 

𝑑𝑁(𝜂
∗, 𝜉∗) ≥̇ 𝛬 ×̇ 𝑑𝑁(𝜂

∗, 𝜉∗) 
That is 

𝑑𝑁(𝜂
∗, 𝜉∗) ≥̇ 𝛬 ×̇ 𝑑(𝜂∗, 𝜉∗) 

⟹ 𝑑𝑁(𝜂
∗, 𝜉∗) ≤̇ 1/̇𝛬 ×̇ 𝑑𝑁(𝜂

∗, 𝜉∗) 
This is true only when𝑑𝑁(𝜂

∗, 𝜉∗) = 1 and so𝜂∗ = 𝜉∗. Hence 𝛶 has a unique fixed 

point in 𝑋. The proof is completed. 
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Abstract: 
  This research article discusses the concept of Riemann integration, which is 

an important topic in calculus. The article begins with an introduction to the 

historical background of Riemann integration, followed by a detailed explanation 

of the basic concepts and definitions involved. The article then goes on to discuss 

the properties of Riemann integrable functions, and finally provides some examples 

of applications of Riemann integration in various fields. The article is intended to 

provide a comprehensive understanding of Riemann integration and its significance 

in calculus. 
 

Keywords: Riemann integration, calculus, integrable functions, properties, 

applications. 
 

Introduction:  

  The concept of integration is an important topic in calculus, and Riemann 

integration is one of the most widely used methods for calculating integrals. 

Riemann integration was first introduced by Bernhard Riemann in the 19th century, 

and since then, it has been an important tool for mathematicians and scientists. 

Riemann integration is a method of approximating the area under a curve using 

rectangles. The area of each rectangle is calculated by multiplying the width of the 

rectangle by the height of the curve at a particular point. By adding up the areas of 

all the rectangles, an approximate value of the area under the curve can be obtained. 

Riemann integration is based on the concept of partitions. A partition is a finite set 

of points that divides an interval into subintervals. The Riemann integral of a 

function f over an interval [a, b] is defined as the limit of a sum of rectangles as the 

width of the rectangles approaches zero. The limit is taken over all possible 

partitions of the interval [a, b]. A function is said to be Riemann integrable if the 

Riemann integral exists and is finite. 

  One of the key properties of Riemann integrable functions is that they are 

continuous almost everywhere. This means that the function may have some points 

where it is discontinuous, but these points have measure zero. Riemann integrable 

functions also satisfy the fundamental theorem of calculus, which states that the 

integral of the derivative of a function is equal to the difference between the values 

of the function at the endpoints of the interval. 
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1. Definition of the Riemann integral: The Riemann integral is defined as the 

limit of a sum of rectangles that approximates the area under a curve. The 

integral is denoted by ∫f(x)dx, where f(x) is a function and dx represents an 

infinitesimal interval in the x-axis. 

2. Integrable functions: A function is said to be Riemann integrable if it 

satisfies certain conditions, such as boundedness and continuity almost 

everywhere.  

3. The Riemann integral in higher dimensions:We explore the concept of 

Riemann integration in higher dimensions and discuss the challenges in 

defining the integral in multiple variables. 

4. Applications of Riemann integration:  

4.1 Physics:The Riemann integration is used in physics, particularly in 

calculating the work done by a variable force.  

4.2 Economics:The Riemann integration is used in economics, specifically 

in calculating consumer surplus.  

4.3 Probability theory:Riemann integration is used in probability theory, 

particularly in calculating the expected value of a continuous random 

variable. 

    5.   Limitations and Challenges of Riemann Integration : This theory incudes 

these limitations and challenges: 

  5.1 Non-integrable Functions: There are functions that are not Riemann 

integrable, such as the Dirichlet function. These functions are discontinuous 

almost everywhere and do not satisfy the conditions required for Riemann 

integration. In such cases, other integration methods such as Lebesgue 

integration may be more appropriate. 
  5.2 Limited Scope: Riemann integration is limited to functions that are defined on 

a bounded interval. If a function is defined on an unbounded interval, such as f(x) 

= 1/x, then the integral may not exist. In such cases, improper integrals can be used 

to calculate the area under the curve. 

  5.3 Limitations in Higher Dimensions: The concept of Riemann integration can 

be extended to higher dimensions, but the method becomes more complicated due 

to the increased number of variables involved. The volume of a solid in three 

dimensions, for example, can be calculated using a triple integral, which involves 

the integration of a function over a three-dimensional region. 

  5.4 Computational Challenges: In practice, it can be challenging to calculate the 

Riemann integral of a function, especially for complex functions or functions with 

a large number of variables. Numerical integration methods, such as the trapezoidal 

rule and Simpson's rule, can be used as an alternative to Riemann integration in 

such cases. 

  5.5 Precision Limitations: Riemann integration involves approximating the area 

under a curve using rectangles. The accuracy of this approximation depends on the 

size of the rectangles used. If the rectangles are too large, the approximation may 

not be accurate enough. If the rectangles are too small, the calculation may take 

longer and may be subject to numerical errors. 
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6. Differences between Riemann integration and other integration 

methods: 
6.1 Lebesgue integration:Lebesgue integration is more general than 

Riemann integration.This method uses a different approach to defining 

the integral of a function, based on the concept of measure theory. 

Instead of approximating the area under the curve using rectangles, 

Lebesgue integration defines the integral of a function in terms of its 

"measurable" sets, which can include sets that are not necessarily 

intervals. 

6.2 Trapezoidal Rule: This method approximates the area under the curve 

of a function by dividing the interval of integration into subintervals 

and approximating the area within each subinterval by a trapezoid 

whose two parallel sides are the function values at the endpoints of the 

subinterval. The sum of the areas of all the trapezoids gives an 

approximation of the total area under the curve. 

6.3 Simpson's Rule: This method approximates the area under the curve 

of a function by dividing the interval of integration into subintervals 

and approximating the area within each subinterval by a parabolic 

curve that passes through the endpoints and the midpoint of the 

subinterval. The sum of the areas of all the parabolic curves gives an 

approximation of the total area under the curve. 

6.4 Monte Carlo Integration: This method approximates the area under 

the curve of a function by randomly sampling points within the interval 

of integration and calculating the fraction of the points that lie under 

the curve. The product of this fraction and the area of the interval of 

integration gives an approximation of the total area under the curve. 
 

Conclusions: Riemann integration is an important topic in calculus that has 

numerous applications in various fields. A comprehensive understanding of 

Riemann integration and its properties is essential for anyone interested in pursuing 

advanced mathematics. Despite its limitations and challenges, Riemann integration 

remains a powerful tool for solving problems in mathematics and science, and 

continues to be an active area of research. 
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Abstract: 
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1. Introduction and Preliminaries: 

  Metric spaces are very important in mathematics and applied sciences. So, 

some authors have tried to give generalizations of metric spaces in several ways. 

For example, Gahler [1] and Dhage [2] introduced the concepts of 2-metric spaces 

and D-metric spaces, respectively. In 2006, Mustafa and Sims [3] introduced a new 

structure of generalized metric spaces which are called G-metric spaces as a 

generalization of metric spaces (𝑋, 𝑑) to develop and introduce a new fixed point 

theory for various mappings in this new structure. Sedghi et al. [4] introduced the 

notion of a 𝐷∗-metric space. Das and Gupta [5] proved the following fixed point 

theorem. 
 

Theorem 1.1 (see [5]) Let (𝑋, 𝑑)  be a complete metric space and 𝑓: 𝑋 → 𝑋  a 

mapping such that there exist 𝛼, 𝛽 ≥ 0 with 𝛼 + 𝛽 < 1 satisfying 

  𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝛼
𝑑(𝑦,𝑓𝑦)[1 + 𝑑(𝑥,𝑓𝑥)]

1 + 𝑑(𝑥,𝑦)
+  𝛽𝑑(𝑥, 𝑦)          (1.1) 

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑓 has a unique fixed point in 𝑋. 

  For more details on fixed point results with rational expressions, see [6-8]. 

Cabrera et al. [9] proved Theorem 1.1 in the context of partially ordered metric 

spaces. 
 

Definition 1.2 (see [9]) Let (𝑋, ⪯)  is a partially ordered set and 𝑓 ∶ 𝑋 → 𝑋 is said 

to be monotone non-decreasing if for all 𝑥, 𝑦 ∈ 𝑋, 

   𝑥 ⪯ 𝑦 ⇒  𝑓𝑥 ⪯ 𝑓𝑦.              (1.2) 
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Theorem 1.3 (see [9]) Let (𝑋, ⪯) is a partially ordered set. Suppose that there exist 

a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) be a complete metric space. Let 𝑓: 𝑋 → 𝑋 be a 

continuous and non-decreasing mapping such that (1.1) is satisfied for all 𝑥, 𝑦 ∈ 𝑋 

with 𝑥 ≤ 𝑦. If there exist 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑓𝑥0, then 𝑓 has a fixed point.  
 

Theorem 1.4 (see [9]) Let (𝑋, ⪯) is a partially ordered set. Suppose that there exist 

a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) be a complete metric space. Assume that if {𝑥𝑛} is 

non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, then 𝑥𝑛 ⪯ 𝑢, for all 𝑛 ∈ ℕ. Let 

𝑓: 𝑋 → 𝑋 be a non-decreasing mapping such that (1.1) is satisfied for all 𝑥, 𝑦 ∈ 𝑋 

with 𝑥 ⪯ 𝑦. If there exist 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑓𝑥0, then 𝑓 has a fixed point.  
 

Theorem 1.5 (see [9]) In addition to the hypothesis of Theorem 1.3 or Theorem 

1.4, suppose that for every 𝑥, 𝑦 ∈ 𝑋, there exist 𝑢 ∈ 𝑋 such that 𝑢 ⪯ 𝑥 and 𝑢 ⪯ 𝑦. 

Then T has a unique fixed point. 
 

  In this paper, we establish some fixed point theorems for monotonic 

mapping involving rational expression in the framework of S-metric spaces 

endowed with a partial order using a class of pairs of functions satisfying certain 

assumptions. 

  Sedghi et al. [10] introduced a new generalized metric space called an S-

metric space. 
 

Definition 1.6 (see [10]) Let 𝑋 be a non-empty set. An S-metric on X is a function 

𝑆: 𝑋3 → [0,+∞) that satisfies the following conditions, for each 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋, 
(S1). 𝑆(𝑥, 𝑦, 𝑧) ≥ 0; 

(S2). 𝑆(𝑥, 𝑦, 𝑧) = 0 if and only if 𝑥 = 𝑦 = 𝑧; 
(S3). 𝑆(𝑥, 𝑦, 𝑧) ≤ 𝑆(𝑥, 𝑥, 𝑎) + 𝑆(𝑦, 𝑦, 𝑎) + 𝑆(𝑧, 𝑧, 𝑎). 

Then S is called an S-metric on X and (X, S) is called an S-metric space. 
 

  The following is the intuitive geometric example for S-metric spaces.  

Example 1.7 (see [10], Example 2.4) Let 𝑋 = ℝ2 and d be the ordinary metric on 

X. Put 𝑆(𝑥, 𝑦, 𝑧) =  𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧)  for all 𝑥, 𝑦 ∈ ℝ2, that is, 𝑆 is the 

perimeter of the triangle given by 𝑥, 𝑦, 𝑧. Then 𝑆 is an 𝑆-metric on 𝑋. 
 

Lemma 1.8 (see [10], Lemma 2.5) Let (𝑋, 𝑆)  be an S-metric space. Then 

𝑆(𝑥, 𝑥, 𝑦) = 𝑆(𝑦, 𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋.  
 

Lemma 1.9 (see [11], Lemma 1.6) Let (X, S)   be an S -metric space. Then 

𝑆(𝑥, 𝑥, 𝑧) ≤ 2𝑆(𝑥, 𝑥, 𝑦) + 𝑆(𝑦, 𝑦, 𝑧)  and  𝑆(𝑥, 𝑥, 𝑧) ≤ 2𝑆(𝑥, 𝑥, 𝑦) + 𝑆(𝑧, 𝑧, 𝑦)  for 

all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 
 

Definition 1.10 (see [10]) Let 𝑋 be an S-metric space. 

(i) A sequence {𝑥𝑛}𝑛=1
∞ ⊂ 𝑋 converges to 𝑥 if and only if 𝑙𝑖𝑚

𝑛→∞
𝑆(𝑥𝑛, 𝑥𝑛, 𝑥) = 0. 

That is for each 𝜖 > 0 there exists 𝑛0 ∈ ℕ such that for all 𝑛 ≥ 𝑛0, 𝑆(𝑥𝑛, 𝑥𝑛, 𝑥) <
𝜖 and we denote this by 𝑙𝑖𝑚

𝑛→∞
𝑥𝑛 = 𝑥. 
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(ii) A sequence {𝑥𝑛}𝑛=1
∞ ⊂ 𝑋 is called a Cauchy if 𝑙𝑖𝑚

𝑛,𝑚→∞
𝑆(𝑥𝑛, 𝑥𝑛, 𝑥𝑚) = 0. That 

is, for each 𝜖 > 0 there exists 𝑛0 ∈ ℕ such that for all , 𝑚 ≥ 𝑛0,  𝑆(𝑥𝑛, 𝑥𝑛, 𝑥𝑚) <
𝜖. 
(iii) 𝑋 is called complete if every Cauchy sequence in 𝑋 is a convergent sequence. 
 

  From (see [10], Examples in page 260), we have the following. 

Example 1.11 

(a). Let ℝ be the real line. Then 𝑆(𝑥, 𝑦, 𝑧) = |𝑥 − 𝑧| + |𝑦 − 𝑧| for all 𝑥, 𝑦, 𝑧 ∈
ℝ, is an S-metric on ℝ. This S-metric is called the usual S-metric on ℝ. 

Furthermore, the usual S-metric space ℝ is complete. 

(b). Let 𝑌 be a non-empty set of ℝ. Then 𝑆(𝑥, 𝑦, 𝑧) = |𝑥 − 𝑧| + |𝑦 − 𝑧| for 

all 𝑥, 𝑦, 𝑧 ∈ 𝑌, is an S-metric on 𝑌. If 𝑌 is a closed subset of the usual 

metric space ℝ, then the S-metric space 𝑌 is complete. 
 

Lemma 1.12 (see [10], Lemma 2.11) Let (𝑋, 𝑆)  be an S-metric space. If the 

sequence {𝑥𝑛}𝑛=1
∞  in 𝑋 converges to 𝑥, then 𝑥 is unique. 

 

Lemma 1.13 (see [10], Lemma 2.12) Let (𝑋, 𝑆) be an S-metric space. If 𝑙𝑖𝑚
𝑛→+∞

𝑥𝑛 =

𝑥 and 𝑙𝑖𝑚
𝑛→+∞

𝑦𝑛 = 𝑦, then 𝑙𝑖𝑚
𝑛→+∞

𝑆(𝑥𝑛, 𝑥𝑛, 𝑦𝑛) = 𝑆(𝑥, 𝑥, 𝑦). 
 

Remark 1.14 (see [11]) It is easy to see that every D∗-metric (see [4]) is S-metric, 

but in general the converse is not true, see the following example. 
 

Example 1.15 (see [11]) Let 𝑋 = ℝ𝑛  and ‖ . ‖ a norm on 𝑋 , then 𝑆(𝑥, 𝑦, 𝑧) =
‖𝑦 + 𝑧 − 2𝑥‖ + ‖𝑦 − 𝑧‖ is S-metric on 𝑋, but it is not D∗-metric because it is not 

symmetric. 
 

  The following lemma shows that every metric space is an S-metric space. 

Lemma 1.16 (see [11], Lemma 1.10)  Let (𝑋, 𝑑) be a metric space. Then we have 

1. 𝑆𝑑(𝑥, 𝑦, 𝑧) = 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 is an S-metric on 𝑋. 

2. 𝑙𝑖𝑚
𝑛→+∞

𝑥𝑛 = 𝑥 in (𝑋, 𝑑) if and only if 𝑙𝑖𝑚
𝑛→+∞

𝑥𝑛 = 𝑥 in (𝑋, 𝑆𝑑). 

3. {𝑥𝑛}𝑛=1
∞  is Cauchy in (𝑋, 𝑑) if and only if {𝑥𝑛}𝑛=1

∞  is Cauchy in (𝑋, 𝑆𝑑). 
4. (𝑋, 𝑑) is complete if and only if (𝑋, 𝑆𝑑) is complete.  
 

  In 2012, Sedghi et al. [10] asserted that an S-metric is a generalization of a 

G-metric, that is, every G-metric is an S-metric, see [10, Remarks 1.3] and [10, 

Remarks 2.2]. The Example 2.1 and Example 2.2 of Dung et al. [12] shows that 

this assertion is not correct. Moreover, the class of all S-metrics and the class of all 

G-metrics are distinct. For more results on S-metric spaces, see [11-12]. 
 

  In this paper, we consider the following class of pairs of functions 𝔉. 
 

Definition 1.17 (see [13]) A pair of functions (𝜑, 𝜙) is said to belong to the class 

𝔉, if they satisfy the following conditions:  

(b1). 𝜑,𝜙: [0,∞) → [0,∞);  
(b2). for 𝑡, 𝑠 ∈  [0,∞), 𝜑(𝑡) ≤ 𝜙(𝑠) then 𝑡 ≤ 𝑠;  
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(b3). for {𝑡𝑛} and {𝑠𝑛} sequence in [0,∞) such that  lim
𝑛→∞

𝑡𝑛 = lim
𝑛→∞

𝑠𝑛 = 𝑎, if 

𝜑(𝑡𝑛) ≤ 𝜙(𝑠𝑛) for any 𝑛 ∈ ℕ, then 𝑎 = 0. 
 

Remark 1.18 (see [13], Remark 4) Note that, if (𝜑, 𝜙) ∈ 𝔉 and 𝜑(𝑡) ≤ 𝜙(𝑡), then 

𝑡 = 0, since we can take 𝑡𝑛 = 𝑠𝑛 =  𝑡 for any 𝑛 ∈ ℕ and by (b3) we deduce that 

𝑡 = 0. 
 

Example 1.19 (see [13], Example 5) Let 𝜑 ∶ [0,∞)  → [0,∞) be a continuous and 

increasing function such that 𝜑(𝑡) = 0 if and only if 𝑡 = 0 (these functions are 

known in the literature as altering distance functions). Let 𝜙 ∶ [0,∞)  → [0,∞) be 

a non-decreasing function such that 𝜙(𝑡) = 0 if and only if 𝑡 = 0 and suppose that 

𝜙 ≤ 𝜑. Then the pair (𝜑, 𝜑 − 𝜙) ∈ 𝔉.  

An interesting particular case is when 𝜑 is the identity mapping, 𝜑 =  1[0,∞) and 

𝜙: [0,∞) → [0,∞) is a non-decreasing function such that 𝜙(𝑡) = 0 if and only if 

𝑡 = 0 and 𝜙(𝑡) ≤ 𝑡 for any 𝑡 ∈ [0,∞). 
 

Example 1.20 (see [13],  Example 6) Let S be the class of functions defined by   

𝑆 =  {𝛼 ∶ [0,∞) → [0, 1) ∶ {𝛼(𝑡𝑛) → 1 ⇒  𝑡𝑛 → 0}}. 
Let us consider the pairs of functions (1[0,∞) , 𝛼1[0,∞)), where 𝛼 ∈ 𝑆 and 𝛼1[0,∞) is 

defined by (𝛼1[0,∞))(𝑡)  =  𝛼(𝑡)𝑡, for 𝑡 ∈ [0,∞). Then (1[0,∞) , 𝛼1[0,∞)) ∈ 𝔉. 
 

Remark 1.21 (see [13], Remark 7) Suppose that 𝑔 ∶ [0,∞) → [0,∞)  is an 

increasing function and (𝜑, 𝜙) ∈ 𝔉. Then it is easily seen that the pair (𝑔 ∘ 𝜑, 𝑔 ∘
𝜙) ∈ 𝔉.  
 

  For more fixed point results with alternating distance function, see [14-19].  
 

Definition 1.22 (see [20]) Let (𝑋, ⪯) be a partially ordered set and let 𝑓, 𝑔: 𝑋 → 𝑋 

be two maps. Map𝑓 is called 𝑔-non-decreasing if 𝑔𝑥 ⪯ 𝑔𝑦 implies 𝑓𝑥 ⪯ 𝑓𝑦 for all 

𝑥, 𝑦 ∈ 𝑋. 
 

Definition 1.23 (see [21]) Let 𝑋 be a non-empty set and let 𝑓, 𝑔: 𝑋 → 𝑋 be two 

maps. 𝑓 and 𝑔 are called to commute at 𝑥 ∈ 𝑋 if 𝑓(𝑔𝑥) = 𝑔(𝑓𝑥).      
                                          

2. Main Results: 

In this section, we investigate the fixed point problem on S-metric spaces. The 

following result states the existence of a fixed point of a map 𝑓 on partially ordered 

S-metric spaces. 
 

Theorem 2.1 Let (𝑋, ⪯) is a partially ordered set. Suppose that there exists an S-

metric 𝑆 on 𝑋 such that (𝑋, 𝑆) be a complete S-metric space. Let 𝑓: 𝑋 → 𝑋 be a 

non-decreasing map such that there exists a pair of functions (𝜑, 𝜙) ∈ 𝔉 satisfying 

  𝜑(𝑆(𝑓𝑥, 𝑓𝑥, 𝑓𝑦)) ≤ 𝑚𝑎𝑥 {𝜙(𝑆(𝑥, 𝑥, 𝑦)), 𝜙 (
𝑆(𝑦,𝑦,𝑓𝑦)[1+𝑆(𝑥,𝑥,𝑓𝑥)]

1+𝑆(𝑓𝑥,𝑓𝑥,𝑓𝑦)
)},    (2.1) 

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦. Assume that if {𝑥𝑛} is non-decreasing sequence in 𝑋 

such that 𝑥𝑛 → 𝑢, then 𝑥𝑛 ⪯ 𝑢 for all 𝑛 ∈ ℕ. If there exist 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯
𝑓𝑥0, then 𝑓 has a fixed point.  
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Proof Choose 𝑥1 ∈ 𝑋 such that 𝑥1 = 𝑓𝑥0. Again, we can choose 𝑥2 ∈ 𝑋 such that 

𝑥2 = 𝑓𝑥1. Continuing this process, we can choose a sequence {𝑥𝑛} in 𝑋 such that 

   𝑥𝑛+1 = 𝑓𝑥𝑛, ∀ 𝑛 ∈ ℕ.          (2.2) 

  Since 𝑥0 ⪯ 𝑓𝑥0  and 𝑥1 = 𝑓𝑥0 , we have 𝑥0 ⪯ 𝑥1 . Since 𝑓  is non-

decreasing, we get 𝑓𝑥0 ⪯ 𝑓𝑥1. By using (2.2), we have 𝑥1 ⪯ 𝑥2. Again, since 𝑓 is 

non-decreasing, we get 𝑓𝑥1 ⪯ 𝑓𝑥2, that is, 𝑥2 ⪯ 𝑥3. Continuing this process, we 

obtain 

𝑓𝑥𝑛 ⪯ 𝑓𝑥𝑛+1, 𝑥𝑛+1 ⪯ 𝑥𝑛+2, ∀ 𝑛 ∈ ℕ  

  Denote  𝛿𝑛 = 𝑆(𝑓𝑥𝑛, 𝑓𝑥𝑛, 𝑓𝑥𝑛+1), ∀ 𝑛 ∈ ℕ.  To prove that 𝑓 has a fixed 

point. We consider two following cases. 
 

Case 1. There exists 𝑛0 such that 𝛿𝑛0  =  0. It implies that 𝑥𝑛0 = 𝑓𝑥𝑛0+1 . By (2.2), 

we get 𝑓𝑥𝑛0+1 = 𝑥𝑛0+1. Therefore, 𝑥𝑛0+1 is a fixed point of 𝑓.  

Case 2. Let 𝛿𝑛 > 0 for all 𝑛 ∈ ℕ. We will show that lim
𝑛→∞

𝛿𝑛 = 0. Since 𝑓𝑥𝑛−1 ≺

𝑓𝑥𝑛 for all 𝑛 ≥ 1, applying the contractive condition (2.1), we have 

     𝜑(𝛿𝑛) = 𝜑(𝑆(𝑓𝑥𝑛, 𝑓𝑥𝑛, 𝑓𝑥𝑛+1)) 

                ≤ max {𝜙(𝑆(𝑥𝑛, 𝑥𝑛, 𝑥𝑛+1)), 𝜙 (
𝑆(𝑥𝑛+1,𝑥𝑛+1,𝑓𝑥𝑛+1)[1+𝑆(𝑥𝑛,𝑥𝑛,𝑓𝑥𝑛)]

1+𝑆(𝑓𝑥𝑛,𝑓𝑥𝑛,𝑓𝑥𝑛+1)
)} 

         = max {𝜙(𝑆(𝑓𝑥𝑛−1, 𝑓𝑥𝑛−1, 𝑓𝑥𝑛)), 𝜙 (
𝑆(𝑓𝑥𝑛,𝑓𝑥𝑛,𝑓𝑥𝑛+1)[1+𝑆(𝑓𝑥𝑛−1,𝑓𝑥𝑛−1,𝑓𝑥𝑛)]

1+𝑆(𝑓𝑥𝑛,𝑓𝑥𝑛,𝑓𝑥𝑛+1)
)}    

         = max {𝜙(𝛿𝑛−1), 𝜙 (
𝛿𝑛[1+𝛿𝑛−1]

1+𝛿𝑛
)}              (2.3) 

Now, we consider two following subcases.  
 

Subcase 1. Consider 

   max {𝜙(𝛿𝑛−1), 𝜙 (
𝛿𝑛[1+𝛿𝑛−1]

1+𝛿𝑛
)} = 𝜙(𝛿𝑛−1)       (2.4) 

  In this case from (2.3), we have 

   𝜑(𝛿𝑛) ≤ 𝜙(𝛿𝑛−1)           (2.5) 

Since (𝜑, 𝜙) ∈ 𝔉 , we deduce that 𝛿𝑛 ≤ 𝛿𝑛−1.        
Subcase 2. If 

   max {𝜙(𝛿𝑛−1), 𝜙 (
𝛿𝑛[1+𝛿𝑛−1]

1+𝛿𝑛
)} = 𝜙 (

𝛿𝑛[1+𝛿𝑛−1]

1+𝛿𝑛
)     (2.6) 

  In this case from (2.3), we have 

   𝜑(𝛿𝑛) ≤ 𝜙 (
𝛿𝑛[1+𝛿𝑛−1]

1+𝛿𝑛
)                    (2.7) 

  Since (𝜑, 𝜙) ∈ 𝔉 and 𝛿𝑛 > 0, we deduce that 𝛿𝑛 ≤ 𝛿𝑛−1. 
  The conclusions of two above subcases,  

   𝛿𝑛 ≤ 𝛿𝑛−1                                                                   (2.8) 

  It follows from (2.8) that the sequence {𝛿𝑛} of real numbers is monotone 

decreasing.Then there exists 𝑟 ≥ 0 such that 

   lim
𝑛→∞

𝛿𝑛 = 𝑟.                                                                 (2.9) 

  Now, we shall show that 𝑟 = 0.  

Denote 𝐴 = {𝑛 ∈ ℕ ∶  𝑛 satisfies (2.4)} and  𝐵 = {𝑛 ∈ ℕ ∶  𝑛 satisfies (2.6)}.                                               
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  From (2.3), we have 𝐶𝑎𝑟𝑑 𝐴 = ∞  or 𝐶𝑎𝑟𝑑 𝐵 = ∞ . Let us suppose that 

𝐶𝑎𝑟𝑑 𝐴 = ∞.  Then from (2.3), we can find infinitely natural numbers 𝑛 satisfying 

inequality (2.5) and since (𝜑, 𝜙) ∈ 𝔉, we infer from (2.9) and condition (b3) that 

𝑟 = 0. On the other hand, if 𝐶𝑎𝑟𝑑 𝐵 = ∞,, then from (2.3), we can find infinitely 

many 𝑛 ∈ ℕ satisfying inequality (2.7). Since (𝜑, 𝜙) ∈ 𝔉, we obtain  

   𝛿𝑛 ≤
𝛿𝑛[1+𝛿𝑛−1]

1+𝛿𝑛
   

for infinitely many 𝑛 ∈ ℕ. Letting the limit as n → ∞ and taking into account that 

(2.9), we deduce that 𝑟 ≤ 𝑟 (1 + 𝑟) (1 + 𝑟)⁄  and consequently, we obtain 𝑟 = 0. 

  Therefore 

   lim
𝑛→∞

𝛿𝑛 = 𝑟 = 0.                                                         (2.10) 

Now, we will show that {𝑓𝑥𝑛} is a Cauchy sequence. Suppose on the contrary that 

{𝑓𝑥𝑛} is not a Cauchy sequence. Then given𝜖 > 0, we will construct a pair of 

subsequences {𝑓𝑥𝑚𝑖} and {𝑓𝑥𝑛𝑖} violating the following condition for least integer 

𝑚𝑖 such that 𝑚𝑖 > 𝑛𝑖 > 𝑖, where 𝑖 ∈ ℕ:     

   𝛾𝑖 = 𝑆(𝑓𝑥𝑛𝑖 , 𝑓𝑥𝑛𝑖 , 𝑓𝑥𝑚𝑖) ≥ 𝜖                                     (2.11) 

  In addition, upon choosing the smallest possible 𝑚𝑖, we may assume that 

   𝑆(𝑓𝑥𝑛𝑖 , 𝑓𝑥𝑛𝑖 , 𝑓𝑥𝑚𝑖−1) < 𝜖                                         (2.12) 

  From Lemma 1.1, Lemma 1.2, (2.11) and (2.12), we have 

              𝜖 ≤ 𝛾𝑖 
                 = 𝑆(𝑓𝑥𝑛𝑖 , 𝑓𝑥𝑛𝑖 , 𝑓𝑥𝑚𝑖) 

                 = 𝑆(𝑓𝑥𝑚𝑖 , 𝑓𝑥𝑚𝑖 , 𝑓𝑥𝑛𝑖) 

                 ≤ 2𝑆(𝑓𝑥𝑚𝑖 , 𝑓𝑥𝑚𝑖 , 𝑓𝑥𝑚𝑖−1) + 𝑆(𝑓𝑥𝑛𝑖 , 𝑓𝑥𝑛𝑖 , 𝑓𝑥𝑚𝑖−1) 

                 ≤ 2𝑆(𝑓𝑥𝑚𝑖−1, 𝑓𝑥𝑚𝑖−1, 𝑓𝑥𝑚𝑖) + 𝑆(𝑓𝑥𝑛𝑖 , 𝑓𝑥𝑛𝑖 , 𝑓𝑥𝑚𝑖−1) 

                 ≤ 𝜖 + 2𝛿𝑚𝑖−1                                                                     (2.13)      

  On letting the limit as 𝑖 → ∞ in the above inequality, we obtain 

   𝑙𝑖𝑚
𝑖→∞

𝛾𝑖 = 𝜖                                                                   (2.14)  

  If we denote  𝛽𝑖 = 𝑆(𝑓𝑥𝑛𝑖+1, 𝑓𝑥𝑛𝑖+1, 𝑓𝑥𝑚𝑖+1), we notice that            

               |𝛽𝑖 − 𝛾𝑖| = |𝑆(𝑓𝑥𝑛𝑖+1, 𝑓𝑥𝑛𝑖+1, 𝑓𝑥𝑚𝑖+1) − 𝛾𝑖| 

                              ≤ 2𝑆(𝑓𝑥𝑛𝑖+1, 𝑓𝑥𝑛𝑖+1, 𝑓𝑥𝑛𝑖) + 𝑆(𝑓𝑥𝑚𝑖+1, 𝑓𝑥𝑚𝑖+1, 𝑓𝑥𝑛𝑖) − 𝛾𝑖 

                              = 2𝑆(𝑓𝑥𝑛𝑖 , 𝑓𝑥𝑛𝑖 , 𝑓𝑥𝑛𝑖+1) + 2𝑆(𝑓𝑥𝑚𝑖+1, 𝑓𝑥𝑚𝑖+1, 𝑓𝑥𝑚𝑖) − 𝛾𝑖 

                            ≤ 2𝛿𝑛𝑖 + 2𝑆(𝑓𝑥𝑚𝑖+1, 𝑓𝑥𝑚𝑖+1, 𝑓𝑥𝑚𝑖) + 𝑆(𝑓𝑥𝑛𝑖 , 𝑓𝑥𝑛𝑖 , 𝑓𝑥𝑚𝑖) − 𝛾𝑖 

                              = 2𝛿𝑛𝑖 + 2𝑆(𝑓𝑥𝑚𝑖 , 𝑓𝑥𝑚𝑖 , 𝑓𝑥𝑚𝑖+1) + 𝛾𝑖 − 𝛾𝑖 

                              = 2𝛿𝑛𝑖 + 2𝛿𝑚𝑖                                                        (2.15) 

  On making 𝑖 → ∞, we immediately obtain that: 

   𝑙𝑖𝑚
𝑖→∞

𝛽𝑖 = 𝜖                                                                     (2.16) 

  It follows from (2.2) and (2.3) that 𝑔𝑥𝑛𝑖+1 = 𝑓𝑥𝑛𝑖 ⪯ 𝑓𝑥𝑚𝑖 = 𝑥𝑚𝑖+1.Now 

using contractive condition (2.1), we get 
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          𝜑(𝛽𝑖) = 𝜑 (𝑆(𝑓𝑥𝑛𝑖+1, 𝑓𝑥𝑛𝑖+1, 𝑓𝑥𝑚𝑖+1)) 

                  ≤

           𝑚𝑎𝑥 {𝜙 (𝑆(𝑥𝑛𝑖+1, 𝑥𝑛𝑖+1, 𝑥𝑚𝑖+1)) , 𝜙 (
𝑆(𝑥𝑚𝑖+1,𝑥𝑚𝑖+1,𝑓𝑥𝑚𝑖+1)[1+𝑆(𝑥𝑛𝑖+1,𝑥𝑛𝑖+1,𝑓𝑥𝑛𝑖+1)]

1+𝑆(𝑓𝑥𝑛𝑖+1,𝑓𝑥𝑛𝑖+1,𝑓𝑥𝑚𝑖+1)
)} 

                    =

        𝑚𝑎𝑥 {𝜙 (𝑆(𝑓𝑥𝑛𝑖 , 𝑓𝑥𝑛𝑖 , 𝑓𝑥𝑚𝑖)) , 𝜙 (
𝑆(𝑓𝑥𝑚𝑖 ,𝑓𝑥𝑚𝑖 ,𝑓𝑥𝑚𝑖+1)[1+𝑆(𝑓𝑥𝑛𝑖 ,𝑓𝑥𝑛𝑖 ,𝑓𝑥𝑛𝑖+1)]

1+𝑆(𝑓𝑥𝑛𝑖+1,𝑓𝑥𝑛𝑖+1,𝑓𝑥𝑚𝑖+1)
)} 

                    = 𝑚𝑎𝑥 {𝜙(𝛾𝑖), 𝜙 (
𝛿𝑚𝑖[1+𝛿𝑛𝑖]

1+𝛽𝑖
)}                                         (2.17) 

  Let us put  

   𝐵 = {𝑖 ∈ ℕ ∶ 𝜑(𝛽𝑖) ≤ 𝜙(𝛾𝑖)},      

   𝐶 = {𝑖 ∈ ℕ ∶ 𝜑(𝛽𝑖) ≤ 𝜙 (
𝛿𝑚𝑖[1+𝛿𝑛𝑖]

1+𝛽𝑖
)}.              

  By (2.17), we have 𝐶𝑎𝑟𝑑 𝐵 = ∞  or 𝐶𝑎𝑟𝑑 𝐶 = ∞ . Let us suppose that 

𝐶𝑎𝑟𝑑 𝐵 = ∞ . Then there exists infinitely many 𝑖 ∈ ℕ  satisfying inequality 

𝜑(𝛽𝑖) ≤ 𝜙(𝛾𝑖)  and since (𝜑, 𝜙) ∈ 𝔉,  we have by letting the limit as 𝑖 → ∞ , 

lim
𝑖→∞
𝛽𝑖 ≤ lim

𝑖→∞
𝛾𝑖. We infer from (2.14) and (2.16) that 𝜖 = 0. This is a contradiction.  

On the other hand, if 𝐶𝑎𝑟𝑑 𝐶 = ∞ , then we can find infinitely many 𝑖 ∈ ℕ 

satisfying inequality 𝜑(𝛽𝑖) ≤ 𝜙 (
𝛿𝑚𝑖[1+𝛿𝑛𝑖]

1+𝛽𝑖
) and since (𝜑, 𝜙) ∈ 𝔉, we obtain 𝛽𝑖 ≤

𝛿𝑚𝑖[1+𝛿𝑛𝑖]

1+𝛽𝑖
. Om letting the limit as 𝑖 → ∞ and using (2.10) and (2.16) we get 𝜖 ≤ 0, 

which is a contradiction. Therefore, since in both possibilities 𝐶𝑎𝑟𝑑 𝐵 = ∞ and 

𝐶𝑎𝑟𝑑 𝐶 = ∞, we obtain a contradiction, we deduce that {𝑓𝑥𝑛}  is a Cauchy 

sequence.  From (2.1), we have {𝑥𝑛+1}  is also a Cauchy sequence. Since 𝑋  is 

complete, there exists 𝑢 ∈ 𝑋 such that 

   lim
𝑛→∞

𝑓𝑥𝑛 = lim
𝑛→∞

𝑥𝑛 = 𝑢.                                                 (2.18) 

  Now we will show that 𝑢 is a fixed point of 𝑓. Since {𝑥𝑛} is non-decreasing 

sequence in 𝑋 such that 𝑥𝑛 → 𝑢, then 𝑥𝑛 ⪯ 𝑢 for all 𝑛 ∈ ℕ. Applying contractive 

condition (2.1), we obtain for any 𝑛 ∈ ℕ, 

  𝜑(𝑆(𝑓𝑢, 𝑓𝑢, 𝑓𝑥𝑛)) ≤ 𝑚𝑎𝑥 {𝜙(𝑆(𝑢, 𝑢, 𝑥𝑛)), 𝜙 (
𝑆(𝑥𝑛,𝑥𝑛,𝑓𝑥𝑛)[1+𝑆(𝑢,𝑢,𝑓𝑢)]

1+𝑆(𝑓𝑢,𝑓𝑢,𝑓𝑥𝑛)
)}     (2.19) 

Put  

𝐸 = {𝑛 ∈ ℕ ∶ 𝜑(𝑆(𝑓𝑢, 𝑓𝑢, 𝑓𝑥𝑛)) ≤ 𝜙(𝑆(𝑢, 𝑢, 𝑥𝑛))},        

𝐹 = {𝑛 ∈ ℕ ∶ 𝜑(𝑆(𝑓𝑢, 𝑓𝑢, 𝑓𝑥𝑛)) ≤ 𝜙 (
𝑆(𝑥𝑛,𝑥𝑛,𝑓𝑥𝑛)[1+𝑆(𝑢,𝑢,𝑓𝑢)]

1+𝑆(𝑓𝑢,𝑓𝑢,𝑓𝑥𝑛)
)}.          

  By (2.19), we have 𝐶𝑎𝑟𝑑 𝐸 = ∞  or 𝐶𝑎𝑟𝑑 𝐹 = ∞ . Let us suppose that 

𝐶𝑎𝑟𝑑 𝐸 = ∞.  
 

54 



INSPIRE        ISSN: 2455-6742 
Vol. 07 & 08; Nov 2021, May 2022 & Nov 2022; No. 01, 02 & 01   48 - 61 

 

  Then there exists infinitely many 𝑛 ∈ ℕ   satisfying inequality 

𝜑(𝑆(𝑓𝑢, 𝑓𝑢, 𝑓𝑥𝑛)) ≤ 𝜙(𝑆(𝑢, 𝑢, 𝑥𝑛))  and since (𝜑, 𝜙) ∈ 𝔉,  letting the limit as 

𝑛 → ∞ and using (2.18), we obtain lim
𝑛→∞

𝑆(𝑓𝑢, 𝑓𝑢, 𝑓𝑥𝑛) = 0,  and consequently, we 

obtain lim
𝑛→∞

𝑓𝑥𝑛 = 𝑓𝑢. The uniqueness of the limit, since  lim
𝑛→∞

𝑓𝑥𝑛 = 𝑢, we have 

𝑓𝑢 = 𝑢. 

  On the other hand, if 𝐶𝑎𝑟𝑑 𝐹 = ∞, we can find infinitely many 𝑛 ∈ ℕ 

satisfying inequality  

   𝜑(𝑆(𝑓𝑢, 𝑓𝑢, 𝑓𝑥𝑛)) ≤ 𝜙 (
𝑆(𝑥𝑛,𝑥𝑛,𝑓𝑥𝑛)[1+𝑆(𝑢,𝑢,𝑓𝑢)]

1+𝑆(𝑓𝑢,𝑓𝑢,𝑓𝑥𝑛)
)                 (2.20) 

  Now, passing to the limit in 

               𝑆(𝑥𝑛, 𝑥𝑛 , 𝑓𝑥𝑛) ≤ 𝑆(𝑥𝑛, 𝑥𝑛, 𝑢) + 𝑆(𝑥𝑛, 𝑥𝑛, 𝑢) + 𝑆(𝑓𝑥𝑛, 𝑓𝑥𝑛, 𝑢)     (2.21) 

as 𝑛 → ∞, we obtain lim
𝑛→∞

𝑆(𝑥𝑛, 𝑥𝑛, 𝑓𝑥𝑛) = 0. Since (𝜑, 𝜙) ∈ 𝔉, letting the limit as 

𝑛 → ∞ in (2.20) and taking into account that lim
𝑛→∞

𝑆(𝑥𝑛, 𝑥𝑛, 𝑓𝑥𝑛) = 0,  we deduce 

that lim
𝑛→∞

𝑆(𝑓𝑢, 𝑓𝑢, 𝑓𝑥𝑛) = 0 and consequently, we obtain lim
𝑛→∞

𝑓𝑥𝑛 = 𝑓𝑢 . Thus, 

we have 𝑓𝑢 = 𝑢. Therefore, in both the cases, 𝑢 is a fixed point of 𝑓. This result 

finishes the proof. 

  By Theorem 2.1, we obtain the following corollaries. 
 

Corollary 2.2 Let (𝑋,⪯) is a partially ordered set. Suppose that there exist an S-

metric 𝑆 on 𝑋 such that (𝑋, 𝑆) be a complete S-metric space. Let 𝑓: 𝑋 → 𝑋 be a 

non-decreasing map such that  

   𝑆(𝑓𝑥, 𝑓𝑥, 𝑓𝑦) ≤ 𝛼𝑆(𝑥, 𝑥, 𝑦) + 𝛽
𝑆(𝑦,𝑦,𝑓𝑦)[1+𝑆(𝑥,𝑥,𝑓𝑥)]

1+𝑆(𝑓𝑥,𝑓𝑥,𝑓𝑦)
,       (2.22) 

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦, where 𝛼, 𝛽 > 0 and 𝛼 + 𝛽 < 1. Assume that if {𝑥𝑛} is 

non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, then 𝑥𝑛 ⪯ 𝑢 for all 𝑛 ∈ ℕ. If there 

exist 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑓𝑥0, then 𝑓 has a fixed point.  

Proof: Since 

              𝑆(𝑓𝑥, 𝑓𝑥, 𝑓𝑦) ≤ 𝛼𝑆(𝑥, 𝑥, 𝑦) + 𝛽
𝑆(𝑦,𝑦,𝑓𝑦)[1+𝑆(𝑥,𝑥,𝑓𝑥)]

1+𝑆(𝑓𝑥,𝑓𝑥,𝑓𝑦)
, 

                                     ≤ (𝛼 + 𝛽)max {𝑆(𝑥, 𝑥, 𝑦),
𝑆(𝑦,𝑦,𝑓𝑦)[1+𝑆(𝑥,𝑥,𝑓𝑥)]

1+𝑆(𝑓𝑥,𝑓𝑥,𝑓𝑦)
} 

                                     = max {(𝛼 + 𝛽)𝑆(𝑥, 𝑥, 𝑦), (𝛼 + 𝛽)
𝑆(𝑦,𝑦,𝑓𝑦)[1+𝑆(𝑥,𝑥,𝑓𝑥)]

1+𝑆(𝑓𝑥,𝑓𝑥,𝑓𝑦)
} 

for all comparable elements 𝑥, 𝑦 ∈ 𝑋 , where 𝛼 + 𝛽 < 1 . This condition is a 

particular case of the contractive condition appearing in Theorem 2.1 with the pair 

of functions  (𝜑, 𝜙) = (1[0,∞) , (𝛼 + 𝛽)1[0,∞)) ∈ 𝔉, given by 𝜑 = 1[0,∞) and 𝜙 =

(𝛼 + 𝛽)1[0,∞), (see Example 1.20). Furthermore, we relaxed the requirement of the 

continuity of mapping to prove the results.  
                                                                            

Corollary 2.3 Let (𝑋,⪯) is a partially ordered set. Suppose that there exist an S-

metric 𝑆 on 𝑋 such that (𝑋, 𝑆) be a complete S-metric space. Let 𝑓: 𝑋 → 𝑋 be a 

non-decreasing map such that there exists a pair of functions (𝜑, 𝜙) ∈ 𝔉 satisfying 
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   𝜑(𝑆(𝑓𝑥, 𝑓𝑥, 𝑓𝑦)) ≤ 𝜙(𝑆(𝑥, 𝑥, 𝑦)),                        (2.23) 

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦, where 𝛼, 𝛽 > 0 and 𝛼 + 𝛽 < 1. Assume that if {𝑥𝑛} is 

non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, then 𝑥𝑛 ⪯ 𝑢 for all 𝑛 ∈ ℕ. If there 

exist 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑓𝑥0, then 𝑓 has a fixed point.  
 

Corollary 2.4 Let (𝑋,⪯) is a partially ordered set. Suppose that there exist an S-

metric 𝑆 on 𝑋 such that (𝑋, 𝑆) be a complete S-metric space. Let 𝑓: 𝑋 → 𝑋 be a 

non-decreasing map such that there exists a pair of functions (𝜑, 𝜙) ∈ 𝔉 satisfying 

   𝜑(𝑆(𝑓𝑥, 𝑓𝑥, 𝑓𝑦)) ≤ 𝜙 (
𝑆(𝑦,𝑦,𝑓𝑦)[1+𝑆(𝑥,𝑥,𝑓𝑥)]

1+𝑆(𝑓𝑥,𝑓𝑥,𝑓𝑦)
),                    (2.24) 

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦, where 𝛼, 𝛽 > 0 and 𝛼 + 𝛽 < 1. Assume that if {𝑥𝑛} is 

non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, then 𝑥𝑛 ⪯ 𝑢 for all 𝑛 ∈ ℕ. If there 

exist 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑓𝑥0, then 𝑓 has a fixed point.  

  Taking into account Example 1.19, we have the following corollary. 
 

Corollary 2.5 Let (𝑋,⪯) is a partially ordered set. Suppose that there exist an S-

metric 𝑆 on 𝑋 such that (𝑋, 𝑆) be a complete S-metric space. Let 𝑓: 𝑋 → 𝑋 be a 

non-decreasing map such that there exists a pair of functions (𝜑, 𝜙) ∈ 𝔉 satisfying 

               𝜑(𝑆(𝑓𝑥, 𝑓𝑥, 𝑓𝑦)) ≤ 𝑚𝑎𝑥{𝜑(𝑆(𝑥, 𝑥, 𝑦)) − 𝜙(𝑆(𝑥, 𝑥, 𝑦)),  

         𝜑 (
𝑆(𝑦,𝑦,𝑓𝑦)[1+𝑆(𝑥,𝑥,𝑓𝑥)]

1+𝑆(𝑓𝑥,𝑓𝑥,𝑓𝑦)
) − 𝜙 (

𝑆(𝑦,𝑦,𝑓𝑦)[1+𝑆(𝑥,𝑥,𝑓𝑥)]

1+𝑆(𝑓𝑥,𝑓𝑥,𝑓𝑦)
)}                   (2.25)  

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦, where 𝛼, 𝛽 > 0 and 𝛼 + 𝛽 < 1. Assume that if {𝑥𝑛} is 

non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, then 𝑥𝑛 ⪯ 𝑢 for all 𝑛 ∈ ℕ. If there 

exist 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑓𝑥0, then 𝑓 has a fixed point.  

  Corollary 2.5 has the following consequences. 
 

Corollary 2.6 Let (𝑋,⪯) is a partially ordered set. Suppose that there exist an S-

metric 𝑆 on 𝑋 such that (𝑋, 𝑆) be a complete S-metric space. Let 𝑓: 𝑋 → 𝑋 be a 

non-decreasing map such that there exists a pair of functions (𝜑, 𝜙) ∈ 𝔉 satisfying 

   𝜑(𝑆(𝑓𝑥, 𝑓𝑥, 𝑓𝑦)) ≤ 𝜑(𝑆(𝑥, 𝑥, 𝑦)) − 𝜙(𝑆(𝑥, 𝑥, 𝑦)),          (2.26) 

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦, where 𝛼, 𝛽 > 0 and 𝛼 + 𝛽 < 1. Assume that if {𝑥𝑛} is 

non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, then 𝑥𝑛 ⪯ 𝑢 for all 𝑛 ∈ ℕ. If there 

exist 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑓𝑥0, then 𝑓 has a fixed point.  
 

Corollary 2.7 Let (𝑋,⪯) is a partially ordered set. Suppose that there exist an S-

metric 𝑆 on 𝑋 such that (𝑋, 𝑆) be a complete S-metric space. Let 𝑓: 𝑋 → 𝑋 be a 

non-decreasing map such that there exists a pair of functions (𝜑, 𝜙) ∈ 𝔉 satisfying 

   𝜑(𝑆(𝑓𝑥, 𝑓𝑥, 𝑓𝑦)) ≤ 𝜑 (
𝑆(𝑦,𝑦,𝑓𝑦)[1+𝑆(𝑥,𝑥,𝑓𝑥)]

1+𝑆(𝑓𝑥,𝑓𝑥,𝑓𝑦)
) − 𝜙 (

𝑆(𝑦,𝑦,𝑓𝑦)[1+𝑆(𝑥,𝑥,𝑓𝑥)]

1+𝑆(𝑓𝑥,𝑓𝑥,𝑓𝑦)
),  (2.27) 

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦, where 𝛼, 𝛽 > 0 and 𝛼 + 𝛽 < 1. Assume that if {𝑥𝑛} is 

non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, then 𝑥𝑛 ⪯ 𝑢 for all 𝑛 ∈ ℕ. If there 

exist 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑓𝑥0, then 𝑓 has a fixed point.  

  Taking into account Example 1.20, we have the following corollary. 
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Corollary 2.8 Let (𝑋,⪯) is a partially ordered set. Suppose that there exist an S-

metric 𝑆 on 𝑋 such that (𝑋, 𝑆) be a complete S-metric space. Let 𝑓: 𝑋 → 𝑋 be a 

non-decreasing map such that there exists 𝛼 ∈ 𝑆 satisfying 

             𝑆(𝑓𝑥, 𝑓𝑥, 𝑓𝑦) ≤ 𝑚𝑎𝑥{𝛼(𝑆(𝑥, 𝑥, 𝑦))𝑆(𝑥, 𝑥, 𝑦),  

                                      𝛼 (
𝑆(𝑦,𝑦,𝑓𝑦)[1+𝑆(𝑥,𝑥,𝑓𝑥)]

1+𝑆(𝑓𝑥,𝑓𝑥,𝑓𝑦)
) (

𝑆(𝑦,𝑦,𝑓𝑦)[1+𝑆(𝑥,𝑥,𝑓𝑥)]

1+𝑆(𝑓𝑥,𝑓𝑥,𝑓𝑦)
)}     (2.28)  

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦, where 𝛼, 𝛽 > 0 and 𝛼 + 𝛽 < 1. Assume that if {𝑥𝑛} is 

non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, then 𝑥𝑛 ⪯ 𝑢 for all 𝑛 ∈ ℕ. If there 

exist 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑓𝑥0, then 𝑓 has a fixed point.  

  A consequence of Corollary 2.8 is the following corollary. 
 

Corollary 2.9 Let (𝑋,⪯) is a partially ordered set. Suppose that there exist an S-

metric 𝑆 on 𝑋 such that (𝑋, 𝑆) be a complete S-metric space. Let 𝑓: 𝑋 → 𝑋 be a 

non-decreasing map such that there exists 𝛼 ∈ 𝑆 satisfying 

   𝑆(𝑓𝑥, 𝑓𝑥, 𝑓𝑦) ≤ 𝛼(𝑆(𝑥, 𝑥, 𝑦))𝑆(𝑥, 𝑥, 𝑦)                        (2.29) 

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦, where 𝛼, 𝛽 > 0 and 𝛼 + 𝛽 < 1. Assume that if {𝑥𝑛} is 

non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, then 𝑥𝑛 ⪯ 𝑢 for all 𝑛 ∈ ℕ. If there 

exist 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑓𝑥0, then 𝑓 has a fixed point.  
 

Corollary 2.10 Let (𝑋,⪯) is a partially ordered set. Suppose that there exist an S-

metric 𝑆 on 𝑋 such that (𝑋, 𝑆) be a complete S-metric space. Let 𝑓: 𝑋 → 𝑋 be a 

non-decreasing map such that there exists 𝛼 ∈ 𝑆 satisfying 

   𝑆(𝑓𝑥, 𝑓𝑥, 𝑓𝑦) ≤ 𝛼 (
𝑆(𝑔𝑦,𝑔𝑦,𝑓𝑦)[1+𝑆(𝑔𝑥,𝑔𝑥,𝑓𝑥)]

1+𝑆(𝑓𝑥,𝑓𝑥,𝑓𝑦)
) (

𝑆(𝑔𝑦,𝑔𝑦,𝑓𝑦)[1+𝑆(𝑔𝑥,𝑔𝑥,𝑓𝑥)]

1+𝑆(𝑓𝑥,𝑓𝑥,𝑓𝑦)
)   (2.30) 

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦, where 𝛼, 𝛽 > 0 and 𝛼 + 𝛽 < 1. Assume that if {𝑥𝑛} is 

non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, then 𝑥𝑛 ⪯ 𝑢 for all 𝑛 ∈ ℕ. If there 

exist 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑓𝑥0, then 𝑓 has a fixed point.  

  In what follows, we prove a sufficient condition for the uniqueness of the 

fixed point in Corollary 2.11. 
 

Theorem 2.11 Suppose that: (a) hypothesis of Theorem 2.1 hold, (b) for each 𝑥, 𝑦 ∈
𝑋, there exists 𝑧 ∈ 𝑋  that is comparable to 𝑥  and  𝑦 . Then 𝑓 has a unique fixed 

point. 

Proof: As in the proof of Corollary 2.11, we see that 𝑓 has a fixed point. Now we 

prove that the uniqueness of the fixe point of 𝑓. Let 𝑢 and 𝑣 be two fixed points of 

𝑓.  

  We consider the following two cases: 

Case.1 𝑢 is comparable to 𝑣. Then 𝑓𝑛𝑢 is comparable to 𝑓𝑛𝑣 for all 𝑛 ∈ ℕ. For all 

𝑎 ∈ 𝑋, applying contractive condition (2.31), we have 

                𝜑(𝑆(𝑢, 𝑢, 𝑣)) = 𝜑(𝑆(𝑓𝑛𝑢, 𝑓𝑛𝑢, 𝑓𝑛𝑣)) 

         ≤ 𝑚𝑎𝑥 {𝜙(𝑆(𝑓𝑛−1𝑢, 𝑓𝑛−1𝑢, 𝑓𝑛−1𝑣)), 𝜙 (
𝑆(𝑓𝑛−1𝑣,𝑓𝑛−1𝑣,𝑓𝑛𝑣)[1+𝑆(𝑓𝑛−1𝑢,𝑓𝑛−1𝑢,𝑓𝑛𝑢)]

1+𝑆(𝑓𝑛𝑢,𝑓𝑛𝑢,𝑓𝑛𝑣)
)}   

                                       = 𝑚𝑎𝑥 {𝜙(𝑆(𝑢, 𝑢, 𝑣)), 𝜙 (
𝑆(𝑣,𝑣,𝑣)[1+𝑆(𝑢,𝑢,𝑢)]

1+𝑆(𝑢,𝑢,𝑣)
)}     (2.32) 
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Consider 

𝑚𝑎𝑥 {𝜙(𝑆(𝑢, 𝑢, 𝑣)), 𝜙 (
𝑆(𝑣, 𝑣, 𝑣)[1 + 𝑆(𝑢, 𝑢, 𝑢)]

1 + 𝑆(𝑢, 𝑢, 𝑣)
)} = 𝜙(𝑆(𝑢, 𝑢, 𝑣)) 

  Then from (2.33), we have 𝜑(𝑆(𝑢, 𝑢, 𝑣)) ≤ 𝜙(𝑆(𝑢, 𝑢, 𝑣)). Since (𝜑, 𝜙) ∈
𝔉, it follows that 𝑆(𝑢, 𝑢, 𝑣) = 0 and so 𝑢 =  𝑣. If  

𝑚𝑎𝑥 {𝜙(𝑆(𝑢, 𝑢, 𝑣)), 𝜙 (
𝑆(𝑣, 𝑣, 𝑣)[1 + 𝑆(𝑢, 𝑢, 𝑢)]

1 + 𝑆(𝑢, 𝑢, 𝑣)
)}

= 𝜙 (
𝑆(𝑣, 𝑣, 𝑣)[1 + 𝑆(𝑢, 𝑢, 𝑢)]

1 + 𝑆(𝑢, 𝑢, 𝑣)
) 

  Then from (2.33), we have  

   𝜑(𝑆(𝑢, 𝑢, 𝑣)) ≤ 𝜙 (
𝑆(𝑣,𝑣,𝑣)[1+𝑆(𝑢,𝑢,𝑢)]

1+𝑆(𝑢,𝑢,𝑣)
).  

  Then since (𝜑, 𝜙) ∈ 𝔉, we have 𝑆(𝑢, 𝑢, 𝑣) ≤ 0 and so 𝑢 =  𝑣. Therefore, 

in both cases we proved that 𝑢 =  𝑣. 
 

Case.2 𝑢 is not comparable to 𝑣. Then there exists 𝑧 ∈ 𝑋 that is comparable to 𝑢 

and 𝑣. Now, we can define the sequence {𝑧𝑛} in 𝑋 as follows: 𝑧0 = 𝑧, 𝑓𝑧𝑛 = 𝑧𝑛+1,
∀ 𝑛 ∈ ℕ. Since 𝑓 is non-decreasing we have, 

   𝑧0 ≤ 𝑧𝑛 ≤ 𝑧𝑛+1 and  lim
𝑛→∞

𝑆(𝑧𝑛, 𝑧𝑛, 𝑧𝑛+1) = 0.                  (2.33) 

  As 𝑢 ≤ 𝑧𝑛, putting 𝑥 = 𝑢 and 𝑦 = 𝑧𝑛  in the contractive condition (2.31), 

we get 

               𝜑(𝑆(𝑢, 𝑢, 𝑧𝑛+1)) = 𝜑(𝑆(𝑓𝑢, 𝑓𝑢, 𝑓𝑧𝑛)) 

                                           ≤ 𝑚𝑎𝑥 {𝜙(𝑆(𝑢, 𝑢, 𝑧𝑛)), 𝜙 (
𝑆(𝑧𝑛,𝑧𝑛,𝑧𝑛+1)[1+𝑆(𝑢,𝑢,𝑓𝑢)]

1+𝑆(𝑓𝑢,𝑓𝑢,𝑓𝑧𝑛)
)} 

                                           = 𝑚𝑎𝑥 {𝜙(𝑆(𝑢, 𝑢, 𝑧𝑛)), 𝜙 (
𝑆(𝑧𝑛,𝑧𝑛,𝑧𝑛+1)

1+𝑆(𝑢,𝑢,𝑧𝑛+1)
)}       (2.34) 

Let us denote 

𝐺 = {𝑛 ∈ ℕ ∶ 𝜑(𝑆(𝑢, 𝑢, 𝑧𝑛+1)) ≤ 𝜙(𝑆(𝑢, 𝑢, 𝑧𝑛))}    

𝐻 = {𝑛 ∈ ℕ ∶ 𝜑(𝑆(𝑢, 𝑢, 𝑧𝑛+1)) ≤ 𝜙 (
𝑆(𝑧𝑛,𝑧𝑛,𝑧𝑛+1)

1+𝑆(𝑢,𝑢,𝑧𝑛+1)
)}                 

Now we remark following again. 

(1).  If 𝐶𝑎𝑟𝑑 𝐺 = ∞, then from (2.34), we can find infinitely natural numbers 

𝑛  satisfying inequality 

                               𝜑(𝑆(𝑢, 𝑢, 𝑧𝑛+1)) ≤ 𝜙(𝑆(𝑢, 𝑢, 𝑧𝑛)).  
Since (𝜑, 𝜙) ∈ 𝔉,  it follows that the sequence {𝑆(𝑢, 𝑢, 𝑧𝑛+1)}  is non-

increasing and it has a limit 𝑙 ≥ 0. Since 

                           lim
𝑛→∞

𝑆(𝑢, 𝑢, 𝑧𝑛+1) = lim
𝑛→∞

𝑆(𝑢, 𝑢, 𝑧𝑛) = 𝑙  

and (𝜑, 𝜙) ∈ 𝔉,we obtain 𝑙 =  0. 

(2).  If 𝐶𝑎𝑟𝑑 𝐻 = ∞, then from (2.34), we can find infinitely natural numbers 

𝑛  satisfying inequality 

                               𝜑(𝑆(𝑢, 𝑢, 𝑧𝑛+1)) ≤ 𝜙 (
𝑆(𝑧𝑛,𝑧𝑛,𝑧𝑛+1)

1+𝑆(𝑢,𝑢,𝑧𝑛+1)
).  
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  Then since (𝜑, 𝜙) ∈ 𝔉, we have 

                               𝑆(𝑢, 𝑢, 𝑧𝑛+1) ≤
𝑆(𝑧𝑛,𝑧𝑛,𝑧𝑛+1)

1+𝑆(𝑢,𝑢,𝑧𝑛+1)
  

  Since lim
𝑛→∞

𝑆(𝑧𝑛, 𝑧𝑛, 𝑧𝑛+1) = 0  and lim
𝑛→∞

𝑆(𝑢, 𝑢, 𝑧𝑛+1) = 𝑙,on making  𝑛 →

∞   we have 𝑙 = 0. 

  Therefore, in both cases we proved that 

   lim
𝑛→∞

𝑆(𝑢, 𝑢, 𝑧𝑛+1) = 𝑙 = 0.  

  In the same way it can be deduced that 

   lim
𝑛→∞

𝑆(𝑣, 𝑣, 𝑧𝑛+1) = 0.  

  Therefore passing to the limit in 

   𝑆(𝑢, 𝑢, 𝑣) ≤ 𝑆(𝑢, 𝑢, 𝑧𝑛+1) + 𝑆(𝑢, 𝑢, 𝑧𝑛+1) + 𝑆(𝑣, 𝑣, 𝑧𝑛+1)  
as 𝑛 → ∞, we obtain 𝑢 = 𝑣. That is, the fixed point is unique. 

 

3. Example:  

  We give an example to demonstrate the validity of the above result.  

Example 3.1 Let 𝑋 = {1, 2, 3} and let 𝑆 be defined as follows. 

    𝑆(1, 1, 1) =  𝑆(2, 2, 2) =  𝑆(3,3, 3) =  0, 
    𝑆(1, 2, 3) = 𝑆(1, 3, 2) = 𝑆(2, 1, 3) = 𝑆(3, 1, 2) =  4, 

𝑆(2, 3, 1) =  𝑆(3, 2, 1) =  𝑆(1, 1, 2) =  𝑆(1, 1, 3) =  𝑆(2, 2, 1) =  𝑆(3, 3, 1) =  2, 
    𝑆(2, 2, 3) =  𝑆(3, 3, 2) =  6, 
    𝑆(2, 3, 2) =  𝑆(3, 2, 2) =  𝑆(3, 2, 3) =  𝑆(2, 3, 3) =  3, 

𝑆(1, 2, 1) =  𝑆(2, 1, 1) =  𝑆(1, 3, 1) =  𝑆(3, 1, 1) =  𝑆(2, 1, 2) =  𝑆(1, 2, 2) 
    =  𝑆(3, 1, 3) =  𝑆(1, 3, 3) =  1.  

  We have 𝑆(𝑥, 𝑦, 𝑧) ≥ 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑆(𝑥, 𝑦, 𝑧) = 0 if and only if 

𝑥 = 𝑦 = 𝑧. By simple calculations, we see that the inequality 

  𝑆(𝑥, 𝑦, 𝑧) ≤ 𝑆(𝑥, 𝑥, 𝑎) + 𝑆(𝑦, 𝑦, 𝑎) + 𝑆(𝑧, 𝑧, 𝑎) 
holds for all 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋. Then 𝑆 is an 𝑆-metric on 𝑋 with the usual.  

Consider the function 𝑓 ∶ 𝑋 → 𝑋  given as 𝑓𝑥 = 1, ∀ 𝑥 ∈ 𝑋. Define the functions 

𝜑,𝜙: [0,∞) → [0,∞)  as follows: for all  𝑡 ∈ [0,∞),  𝜑(𝑡) = ln (
1

12
+
5𝑡

12
)  and 

 𝜙(𝑡) = ln (
1

12
+
3𝑡

12
). Then all assumptions of Theorem 2.1 are satisfied. Then 

Theorem 2.1 is applicable to 𝑓 on 𝑆.  

 

4. Conclusions: 

  In this article, we established some fixed point theorems for g-monotone 

maps involving rational expression in the framework of S-metric spaces endowed 

with a partial order using a class of pairs of functions satisfying certain 

assumptions. The presented theorems extend, generalize and improve many 

existing results on metric spaces to S-metric spaces in the literature. Our results 

may be the motivation to other authors for extending and improving these results 

to be suitable tools for their applications.   
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Abstract: 

  In this article concept of linear equations is explained in light of Matrix and 

its properties. This concept is widely used to establish results when system of linear 

equation is given or found. To understand it required definitions and explanations 

are given in the form of different cases with appropriate examples 
Keywords: 

  Linear equations, matrix, rank of a matrix, consistent and in-consistent 

system. 
 

1. Introduction: 

  Linear algebra is a branch of mathematics that deals with linear equations 

and their representations in the vector space using matrices. It is the study of linear 

functions and vectors. Linear equations, matrices, and vector spaces are the most 

important components of this subject. System of simultaneous linear equations are 
important for studying and solving a large proportion of the problems in many 
topics in applied mathematics1Interest in modelling traffic flow has been around 

since the appearance of traffic jams. Ideally, if we can correctly predict the behavior 

of vehicle flow given an initial set of data. It is of particular interest in regions 

having high traffic density which may be caused by: 

 •High volumes of vehicles in peak time  

 • Accidents, 

 • Closure of one or more lanes of the road etc.  

  In this article we will be focusing on a concept of linear algebra naming 

system of linear equations to regulate the traffic flow. 
 

2. History of the topic: 

The collections of equations: 

 

 

 

 

 

where aij and bj (1 ≤ i ≤ m and 1 ≤ j ≤ n) belongs to the field F and are called as 

scalars.  x1, x2,...,xn are n variables taking values from Field F, is called a system of 

m linear equations in n unknowns over the field F. 
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  The matrix (A)mxn is called the coefficient matrix of the system (S). 

 

 

 

 

  If we let, 

 

 

 

 

 

then the system (S) can be rewritten as  Ax = b, where A is the coefficient matrix 

and x,b arecolumn matrix of order nx1 and mx1 respectively 
 

3. Solution of system of equations: 
  The values of the variable or unknown x1,x2…..xnwhich satisfy the linear 

equations simultaneously is called as the solution to given system of linear 

equation. A solution to the system (S) is an n-tuple 

 
 
 
 
 

  A set containing all the solution to the given system of is called as the 

solution set of that system.  

Consistent and inconsistent system: 

  If the set of solutions is non-empty we say that the system is consistent 

otherwise inconsistent. 

Homogeneous and nonhomogeneous system of equations: 
  A system Ax = b consisting of m linear equations and n unknowns or 

variables is said to be homogeneous if b = 0. Otherwise, the system is said to be 

nonhomogeneous. Eg: 

   ex+πy=0 

   πx+ey=0, is a homogeneous system whereas 

   2x+y=3 

   X+5y=6, is a nonhomogeneous system 

There are different methods of finding out the solutions to a system of linear 

equation 

1. Cramer’s rule 

2. Matrix method 

3. Rank method (here) 
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4. Solution of a nonhomogeneous system of linear equations 

we have 2 categories of a non-homogeneous linear equation 

1. Number of equation and number of variables are same 

2. Number of equation and number of variables are different 

  For a matrix (A)mxn the rank is equal to the total number of linearly 

independent rows or columns. 

  We here concentrate on the technique of finding out the solutions of system 

of equations involves the rank of the coefficient matrix Ax = b and the rank of the 

matrix [A:b] where [A:b]is called the augmented matrix to the system Ax = b. 
 

Theorem 

  For a system Ax = b of linear equations we say that the system is consistent 

if and only if rank(A) = rank[A:b] 

Theorem 

  let Ax=b be a system oh m linear equations in n number of variables then: 

Case 1 when m>n 

1. If Rank [A]= Rank [A:b]=n, the system is consistent and has a unique 

solution. 

2.  If Rank [A]= Rank [A:b]<n, the system is consistent and has infinitely 

many solutions. 

3.  Rank [A] is not equal to Rank [A:b] the system is inconsistent and has no 

solution 

Case 2 when m<n 

  rank[A]= rank[A:b]=r, where r<m or r=m implies r<n then from case obe 

we say the system has infinitely many number of solutions. 

Solution of a homogeneous system of linear equations 

  Clearly for a homogeneous system of linear equations rank [A]= rank[A:b] 

hence this system is always consistent i.e., for a homogenous system of linear 

equations zero vector is always a solution hence the solution set is never empty 

which implies that homogeneous systems are always consistent. 

Case1: if rank[A]=r<n, the system has infinitely many solution 

Case2: if rank[A]= n, the system has unique solution (n= number of variables) 

  Two systems of linear equations are called equivalent if they have the same 

solution set. A matrix is called as reduced row echelon form if it satisfies the 

following three conditions 

(a) Any row containing a nonzero entry precedes any row in which all the entries 

are zero (if any). 

(b) The first nonzero entry in each row is the only nonzero entry in the 

corresponding column. 

(c) The first nonzero entry in each row is 1 and it occurs in a column to the right 

of the first nonzero entry in the preceding row. 
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What is a traffic flow? 

 In mathematics, traffic flow is the study of interactions between vehicles, 

drivers, and infrastructure (including highways, signage, and traffic control 

devices) with the aim of understanding and developing an optimal transport 

network with efficient movement of traffic and minimal traffic 

congestion problems. 

Impact of traffic congestion 

 Time consumption  

 Chaos 

 Bottle neck situation  

 Misery to people 

 Air Pollution  

 Wear and tear on vehicles  

 Encourage Road rage 

5. Mathematical model 

Model Assumptions 

The following assumptions were made in order to ensure the smooth flow of the 

traffic: 

1. Flow in equals flow out at each intersection 

2. There should be only one way traffic   

i.e., the streets must all be one-way with the arrows indicating the direction of  

traffic flow. 
 

UNDERSTANDING THE MODEL MATHEMATICALLY WITH THE 

HELP OF AN EXAMPLE 

Fig 1(network of one way street) 

 

 

 

 

 

 

 

 

Fig 2(intersections) 
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Fig 3(given initial data) 

 

Fig 4(assignment of variable) 

 

Fig 5(formulation of the problem) 
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Fig 6(formation of system of linear equation) 

 
6. AUGMENTED MATRIX OF THE GIVEN SYSTEM OF EQUATIONS: 
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Fig 7(solution) 

 
7. CONCLUSION:  

  In the above article author has described how the concept of system of linear 

equations can be used to solve traffic flow problems. Above method can also be 

used to find unknown age, angles of trigonometry, calculation of speed, distance 

and time etc. with a given set of data.  
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ABSTRACT 

The object of this paper is to introduce a new encryption algorithm 

involving Spiral rotation technique and invertible matrix. In the proposed algorithm 

firstly we apply the matrix multiplication under modulo 29, to get an intermediate 

cipher and then we apply the Spiral rotation technique that gives the final 

ciphertext. Using secret key matrix along with congruence modulo, the message 

can be encrypted and decrypted perfectly. 

Keywords: Congruence, Spiral Rotation, Invertible Matrix, Encryption and 

Decryption.  
 

1. INTRODUCTION:  
 

In the presence of third parties, the sending of a message with secured 

coding is known as cryptographic technique [1]. Based on mathematical procedures 

and algorithms, the secured data transmission is done. There are multiple and 

multilevel encryption systems for ensuring the security. But when along with the 

complexity of the algorithm the security level increases the time for encryption and 

decryption, the sped and performances of these systems are also increases. In this 

research paper, we introduce a new encryption algorithm called ‘Byte Spiral 

Rotation’ along with invertible matrix that enhance the speed of the encryption 

scheme. 

A square matrix AB said to bean invertible matrix iff there exists another 

square matrix B s.t. AB = BY = 1. It should be noted that all the square matrices 

are not invertible. If determinant value of a square matrix is non-zero, then the 

square matrix will be non-singular or invertible matrix. 
 

2. LITERATURE REVIEW:  
 

Bhati [2,3], Hamed [4] , Sani Isa [5], and Kumar [6]  and other researchers 

introduced various algorithms for encryption and decryption of a message 

involving invertible matrix, Byte rotation and Spiral rotation techniques time to 

time. There is no any single and simple algorithms are sufficient for encryption 

used decryption of a message. Therefore, to obtain the better algorithm, researchers 

worked hard to remove the deficiency.   
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3. METHODOLOGY: 

We use multiple encryption and multilevel encryption system for providing 

the sufficient security. Here we establish an algorithm model that having two steps. 

Firstly we apply the secret key matrix along with congruence modulo (Choose any 

prime number) and obtain an intermediate cipher. After that we apply the spiral 

rotation technique (agree both sender and receiver), to get final ciphertext. 

For decryption the message we will use the reverse process of encryption 

along with spiral rotation technique and invertible matrix of congruence modulo p. 

The numerical values for alphabets/character which are used in the paper 

are given in the following table: 

Table –I 

A B C D E F G H I J K L M N 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

O P Q R S T U V W X Y Z Space  

15 16 17 18 19 20 21 22 23 24 25 26 0  

 

4. ALGORITHM: 

Encryption: 

1. Consider a non-singular square matrix of order 4 as key matrix (sayK). 

2. Arrange the character of plaintext in a block size of 16 bytes as 4×4 matrix. P 

(say). 

3. Convert the alphabets (which are arranged in matrix form) into corresponding 

numeric values using Table I and assigned this resultant matrix by M (say). 

4. Now calculate  

KP (mod p) = M (say), 

5. Convert each entries of matrix M into corresponding alphabet/character by 

using Table-I, we get an intermediate ciphertext. 

6. Obtain the transpose of M, Say MT. 

7. Apply the spiral rotation on the entries of MT about the diagonal element by 

only one step from the first entry. For this technique sender and receiver should 

be agreed and maintain the secrecy also. 

Here we rotate the entries of  

[

a11 a12
a21 a22

a13 a14
a23 a24

a31 a32
a41 a42

a33 a34
a43 a44

] 

 as   a11 a21 a12 a13 a22 a31 a41 a32 a23  

                        a14 a24 a33 a42 a43 a34 a44 a11. 

We get the another matrix say MSR 

8. Convert all entries of MSR into their corresponding alphabet/characters using 

Table I, to get final cipher text. 

9. Send the cipher text, selected prime number as public key, Spiral rotation 

technique and integer n = 4 as private key to the receiver via secured channel.   
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Decryption Steps: 

1. Consider the cipher text and arrange them in a square matrix of order 4 of block 

size of 16 bytes. After arranging convert them into their corresponding numeric 

values using Table-I, we get a resulting matrix D(say). 

2. Rotating all the entries of matrix D about the diagonal elements by only one step 

form the last entry, we get after spiral rotation an another matrix say DSR. For 

this technique sender and receiver should be agreed and maintain the secrecy 

also. Here we rotate the entries of D 

D =  [

a11 a12
a21 a22

a13 a14
a23 a24

a31 a32
a41 a42

a33 a34
a43 a44

] 

as follows: a11 a44 a34 a43 a42 a33 a24 a14 a23 a41 a31 

a22 a13 a12 a21 a11 a44. 

3. Obtain the transpose of DSR, say D
SR
T  

4. Convert all the entries of D
SR
T into their corresponding alphabet/ characters 

using Table-I, we get intermediate plaintext (or cipher text). 

5. Now calculate K
–1
D
SR
T  (mod p) = p(say),  

where p is a prime number. 

6. Convert all the entries of p into their corresponding alphabet/ character using 

Table-I, we get another matrix of order 4×4 of block size 16 byte. 

7.  Arrange the alphabets (which are obtained in step 6) in row wise, we get the 

original plaintext.  
 

Illustration: 

Encryption Steps: 

1. Consider a non-singular key matrix of order n (say n = 4) as key Matrix, say 

K given as follows: 

K = [

9     1    3   6
13   11  7  0
5      7   4   7 
2    6   1  10

] , |K| ≠ 0 

and K–1 under modulo – p = 29 (say) is   

K–1 =[

20  2   19  24
21  21 14  24
21   9    9   13
19 18  13   26

] 

where K and p are the public key used for encryption and K–1 and n are the 

private key used for decryption. 

2. Let the plaintext be  

“ASYMMETRICCIPHER”  

3. Convert the plain text into block of size 4×4 matrix and their numeric 

equivalent using Table I, to get – 
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P = [

A S
M E

Y M
T R

I C
P H

C I
E R

] =  [

1 19
13 5

25 13
20 18

9 3
16  8

  3 9
  5 18

] 

4. Multiply the key matrix and plaintext matrix to generate, multiplication 

matrix under modulo 29, i.e.  

KP (mod 29) = M (say) 

=>M = KP (mod 29) 

= [

9 1
13 11

3 6
7 0

5  7
2 6

  4 7
  1 10

] [

1 19
13 5

25 13
20 18

9  3
16  8

  3 9
  5 18

] (mod 29) 

 

= [

0 1
16 4

  23 9
   15 24

12 24
17 6

22 5
20 4

] 

Consider M as intermediate Ciphertext matrix, therefore intermediate 

Ciphertext by using Table I as follows: 

  “AWIPDOXLXVEQFTD” 

5. Find the transform of M i.e. 

 M
T
 (say) =  [

0 16
1 4

12 17
24 6

23 15
9 24

22 20
5 4

] 

6. Rotating all the entries of MT about the diagonal elements by only one step 

from the first entry, we get by spiral rotation as follows: 

M
SR

 (say) =  [

4 1
0 12

16 24
15 17

4 9
23 22

6 5
24 20

] 

7. Convert all the entries of M
SR

 into their corresponding alphabet/character 

using Table I, we get the following encrypted message as final ciphertext. 

“DAPX LOQDIFEWVXT” 

Decryption Steps: 

1. Consider the ciphertext 

“DAPX LOQDIFEWVXT” 

2. Arrange it in block size of 16 bytes i.e. 4×4 matrix and convert them into 

their corresponding numeric values using Table I, we get –  

 

D (say) =  [

4 1
0 12

16 24
15 17

4 9
23 22

6 5
24 20

] 
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3. Rotating all the entries of matrix D about the diagonal elements, only one 

step from the last entry, we get after spiral rotation (as per agreement of 

sender and receiver) as follows: 

D
SR

 (say) =  [

0 16
1 4

12 17
24 6

23 15
9 24

22 20
5 4

] 

4. Find the transpose of D
SR

 i.e. 

D
SR

T
 (say)  = [

0   1
16   4

  23 9
   15 24

12 24
17 6

22 5
20 4

] 

5. Convert all the entries of DSR into their corresponding alphabet/characters 

using Table I, we get the following intermediate plaintext (or ciphertext): 

“AWIPDOXLXVEQFTD” 

6. Now calculate 

K
–1
D
SR

T
 (mod 29) = p (say) 

 

 P = [

20  2   19  24
21  21 14  24
21   9    9   13
19 18  13   26

] [

0 1
16 4

  23 9
   15 24

12 24
17 6

22 5
20 4

] = (mod 29) 

 

            = [

1 19
13 5

25 13
20 18

9 3
16  8

  3 9
  5 18

] 

7. Convert the all entries of above matrix P into their corresponding 

alphabet/character using Table I, we get a matrix of order 4×4 of block size 

16 byte as follows:  

[

A S
M E

Y M
T R

I C
P H

C I
E R

] 

8. Arrange the elements of above matrix in row wise, we get the following 

original plaint text as follows:  

“ASYMMETRICCIPHER” 
 

5. RESULT AND DISCUSSION: 

 In this paper we used invertible matrix congruent modulo 29 for 

encrypting and decrypting the message. Here, mathematical relations have ben 

logically implemented to keep the inform information secure from others (except 

receiver). Since here we use mathematical logic, therefore using of matrices is the 

strongest method among the other cryptographic technique. 
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It is very difficult to extract the original information due to chosen of spiral 

rotation technique along with invertible matrix congruent modulo of a prime 

number. Here, brute force attack is also difficult due to the key size of 16 bytes (or 

128 bits). 
 

6. CONCLUSION: 

Since in this paper we use the spiral rotation technique and invertible matrix, 

therefore the proposed algorithm arise the strong security system and produced 

cipher text cannot be broken easily. 

Here, we also generate the double encryption system firstly from invertible 

matrix and see secondly from spiral rotation technique. The information could be 

send and received safely by using above method without key matrix, congruence 

relation and spiral rotation technique the message could not be decrypt. 
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ABSTRACT:  
  In this paper, some fixed point theorems for expansion mappings are proved 

in sequentially complete quasi-gauge function space generated by the family of 

pseudo metrics.  
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1. INTRODUCTION:   

  Quasi-gauge space was first developed by Reilly [8, 9]. It is one of the space 

in which Banach contraction principle has been carried over. A quasi-gauge 

structure for topological spaces (X,T) is a family P of pseudometrics on X such that 

T has a subbase, i.e., the family (X, P, ) is the set {y  X :  p(x, y) < }. If the 

topological space (X,T) has a quasi –gauge structure P, it is called a quasi-gauge 

space and is denoted by (X, P). 
 

2.  PRELIMINARIES :   
  To eastablish our main result we need the following definitions:  

Definition 2.1: Let X be a non-empty set and Yx 
 Reilly[8,9] be a quasi-gauge 

function space. A non-negative real valued function p defined on the function space 

(Xx  Yx) having pointwise topology with the properties that : 

(i)  p(f, g)(x) = 0 if f = g  Yx and 

(ii) p(f, g)(x) ≤  p(f, h)(x)  +  p(h, g)(x)  for all f, g, h  Yx
   

Is called a quasi-gauge metric. 

Definition 2.2: A sequence {fn} in a quasi-gauge function space (Yx, P) is called 

p-cauchy, if  for every p  P, there is an integer k, such that p(fm, fn)(x) <  for all 

m, n ≥ k. 

Definition 2.3: A quasi-gauge function space (Yx, P) is called sequentially 

complete, if every p-cauchy sequence in Yx converges in Yx. 
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Definition 2.4: An operator T on a quasi-gauge function space (Yx, P) into itself is 

said to be an expansion map, if  p(Tf, Tg)(x) ≥  λp(f, g)(x), for all f, g  Yx
 ,  λ > 1.  

Throughout in this paper we use the symbole; 

  p(f, g)(x). p(f, g)(x) = p2(f, g)(x) 
 

3. MAIN RESULTS:  

Theorem 3.1 :  Let (Yx, P) be a sequentially complete quasi-gauge function space 

gegerated by the family P of pseudo metricsand let T1 and T2  be any two operators 

on Yx, such that 

(3.1.1)   T1 and T2  are commutes,  

(3.1.2)   [p(𝑇1
𝑟(f), 𝑇2

𝑠(g))(𝑥)]
2
  

                       ≥ λmin{[p(𝑓, 𝑔)(𝑥)]2, [p(𝑓, 𝑇1
𝑟(f))(𝑥)]

2
, [p(𝑔, 𝑇2

𝑠(g))(𝑥)]
2
, 

                                    [p(𝑓, 𝑇1
𝑟(f))(𝑥)]. [p(𝑓, 𝑔)(𝑥)],  

 [p(𝑔, 𝑇2
𝑠(g))(𝑥)]. [p(𝑓, 𝑔)(𝑥)],  

               [p(𝑓, 𝑇1
𝑟(f))(𝑥)]. [p(𝑔, 𝑇2

𝑠(g))(𝑥)], [p(𝑇1
𝑟(f), 𝑇2

𝑠(g))(𝑥)]. [p(𝑓, 𝑔)(𝑥)]} 
Where r and s are positive integer and  λ > 1. Then T1 and T2  have a fixed point in 

(Yx, P).   

PROOF: Define the sequence {fn} as follows, 

                𝑓0(x)  =  𝑇1
𝑟(f1)(𝑥),          𝑓2𝑛−2(x)  =  𝑇1

𝑟(f2n−1)(𝑥) 
                𝑓1(x)  =  𝑇2

𝑠(f2)(𝑥)   and   𝑓2𝑛−1(x)  =  𝑇2
𝑠(f2n)(𝑥) 

  If, 𝑓𝑚 = 𝑓𝑚−1 for some m, then 𝑓𝑚 has a fixed point of T1 and T2 . Hence, 

without loss of generality we can assume that 𝑓𝑛 = 𝑓𝑛−1 for every n. From (3.1.1), 

we have 

[p(𝑓0,  𝑓1)(𝑥)]
2   =   [p(𝑇1

𝑟(𝑓1),  𝑇2
𝑠(𝑓2))(𝑥)]

2
  

                  ≥  λmin{[p(𝑓1, 𝑓2)(𝑥)]
2, [p(𝑓1, 𝑇1

𝑟(𝑓1))(𝑥)]
2
, [p(𝑓2, 𝑇2

𝑠(𝑓2))(𝑥)]
2
, 

               [p(𝑓1,  𝑇1
𝑟(𝑓1))(𝑥)]. [p(𝑓1, 𝑓2)(𝑥)],   [p(𝑓2, 𝑇2

𝑠(𝑓2))(𝑥)]. [p(𝑓1, 𝑓2)(𝑥)],  

                   [p(𝑓1, 𝑇1
𝑟(𝑓1))(𝑥)]. [p(𝑓2,  𝑇2

𝑠(𝑓2))(𝑥)], [p(𝑇1
𝑟(𝑓1), 𝑇2

𝑠(𝑓2))(𝑥)]. 
[p(𝑓1,  𝑓2)(𝑥)]} 
                  ≥  λmin{[p(𝑓1, 𝑓2)(𝑥)]

2, [p(𝑓1, 𝑓0)(𝑥)]
2, [p(𝑓2, 𝑓1)(𝑥)]

2, 
                            [p(𝑓1, 𝑓0)(𝑥)]. [p(𝑓1, 𝑓2)(𝑥)],   [p(𝑓2, 𝑓1)(𝑥)]. [p(𝑓1, 𝑓2)(𝑥)],  
                            [p(𝑓1, 𝑓0)(𝑥)]. [p(𝑓2, 𝑓1)(𝑥)], [p(𝑓0, 𝑓1)(𝑥)]. [p(𝑓1,  𝑓2)(𝑥)]} 
Thus,  

(3.1.3) [p(𝑓0,  𝑓1)(𝑥)]
2   ≥   λmin{[p(𝑓1, 𝑓2)(𝑥)]

2, [p(𝑓1, 𝑓0)(𝑥)]. [p(𝑓1, 𝑓2)(𝑥)]}   

Then from (3.1.3) we have, 

Case I : If  [p(𝑓1, 𝑓2)(𝑥)]
2  is minimum, then  

                   [p(𝑓0,  𝑓1)(𝑥)]
2   ≥  λ[p(𝑓1, 𝑓2)(𝑥)]

2, i.e. 

(3.1.4)        [p(𝑓1,  𝑓2)(𝑥)]  ≤   
1

√λ
 [p(𝑓0,  𝑓1)(𝑥)],  as λ > 1.  

Case II : If  [p(𝑓1, 𝑓0)(𝑥)]. [p(𝑓1, 𝑓2)(𝑥)]  is minimum, then  

                   [p(𝑓0,  𝑓1)(𝑥)]
2   ≥  λ [p(𝑓1, 𝑓0)(𝑥)]. [p(𝑓1, 𝑓2)(𝑥)]  
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Or,              [p(𝑓0, 𝑓1)(𝑥)]   ≥  λ [p(𝑓1, 𝑓2)(𝑥)] , 

(3.1.5)        [p(𝑓1,  𝑓2)(𝑥)]  ≤   
1

 λ
 [p(𝑓0,  𝑓1)(𝑥)]  ≤  

1

√λ
 [p(𝑓0,  𝑓1)(𝑥)],  as  λ > 1.  

Therefore from (3.1.3), (3.1./4) and (3.1.5), we have 

                     [p(𝑓1,  𝑓2)(𝑥)]  ≤   
1

√λ
 [p(𝑓0,  𝑓1)(𝑥)] 

Hence in general, 

                   [p(𝑓2𝑛,  𝑓2𝑛+1)(𝑥)] ≤  (
1

√λ
)
2𝑛
[p(𝑓0,  𝑓1)(𝑥)]  → 0 as n → ∞. 

  Hence, {fn} is a Cauchy sequence. Since Yx is sequentially complete, there 

exists u  Yx, such that  lim
𝑛→∞

𝑓𝑛 = u, and so we have  

   lim
𝑛→∞

𝑇1
𝑟(𝑓2𝑛−1) = u   and  lim

𝑛→∞
𝑇2
𝑠(𝑓2𝑛) =  u   

  Thus, u is a common fixed point of T1 and T2 . This completes the proof. 

  Initially, Maia [5], have proved fixed point theorems in space having two 

different matrices. On the same line we shall obtain a result having two different 

quasi-gauge function space. 
 

Theorem 3.2 :  Let Yx be a sequentially complete quasi-gauge function space with 

two quasi-gauge structurs P and P1, such that       

(3.2.1)    P1(f, g)(x) = P(f, g)(x),  

(3.2.2)   T1 and T2  are continuous w. r. t. P1,  

(3.1.3)   Yx is sequentially complete w. r. t. P1 and 

(3.1.4)    T1 and T2  satisfies conditions (3.1.1) and (3.1.2) w. r. t. P. 

  Then T1 and T2  have a fixed point.   

PROOF: Define the sequence {fn} as follows, 

                 𝑓0(x)  =  𝑇1
𝑟(f1)(𝑥),          𝑓2𝑛−2(x)  =  𝑇1

𝑟(f2n−1)(𝑥) 
               𝑓1(x)  =  𝑇2

𝑠(f2)(𝑥)   and   𝑓2𝑛−1(x)  =  𝑇2
𝑠(f2n)(𝑥) 

      Then proceeding as in the proof of theorem 3.1 with similar arguments, we get 

  [P(𝑓2𝑛,  𝑓2𝑛+1)(𝑥)]  ≤  (
1

√λ
)
2𝑛
[P1(𝑓0,  𝑓1)(𝑥)] 

Since,    [P1(𝑓, 𝑔)(𝑥)]  ≤  P(f, g)(x), we have 

   [𝑃1(𝑓2𝑛,  𝑓2𝑛+1)(𝑥)]  ≤  [P(𝑓2𝑛,  𝑓2𝑛+1)(𝑥)]   

    ≤  (
1

√λ
)
2𝑛
[P1(𝑓0,  𝑓1)(𝑥)] → 0 as n → ∞. 

  Hence, {fn} is a Cauchy sequence w.r.t. P1. Since Yx is sequentially 

complete w.r.t. P1, there exists u  Yx, such that  lim
𝑛→∞

𝑓𝑛 = u. Also, since T1 and T2  

are continuous w. r. t. P1, we have     

   u = lim
𝑛→∞

𝑓2𝑛+1   implies that,  

   lim
𝑛→∞

𝑇1(𝑓2𝑛+1) =   T1 lim
𝑛→∞

(𝑓2𝑛+1)  =   T1u, 

  Similarly,   u = lim
𝑛→∞

𝑓2𝑛   implies that,  

   lim
𝑛→∞

𝑇2(𝑓2𝑛) =   T2 lim
𝑛→∞

(𝑓2𝑛)  =   T2u, 

  Thus, u is a common fixed point of T1 and T2 . This completes the proof. 
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